CellB Codec 15

The Cell codec discussed in the preceding chapter is useful primarily in
authoring applications. Its advantages are its fast decoding and the high
guality of the images it produces, particularly on indexed-color frame buffers.
The CellB codec, which derives from its Cell counterpart, is intended for use
primarily in videoconferencing applications. It features a greater balance
between the time spent compressing and decompressing images than the Cell
codec and employs a fixed colormap. The CellB codec’s strengths include

Software compression at interactive rates

Very fast decoding and display, especially on indexed-color frame buffers
Low rates of CPU use

Good quality output

The remainder of this chapter is divided into four sections. First, the chapter
explains how the CellB compressor/decompressor works. Second, it explains
briefly how to create a CellB CIS. Third, it discusses the CIS attributes that
apply specifically to the CellB codec (as opposed to the general CIS attributes
covered in the section “General CIS Attributes” on page 257.) Fourth, the
chapter introduces the subject of accelerating the playback of CellB
bytestreams. For further information on this subject, see Chapter 21,
“Acceleration in XIL Programs.”

297



15

How the Codec Works

298

Cell Codes

The CellB compressor works on YC,C, images that conform to the guidelines
set forth in CCIR Recommendation 601. The compressor performs intraframe
compression by representing 4-by-4 blocks of pixels using cell codes. It
performs interframe encoding using skip codes.

The images you compress using the CellB compressor must have a width and
height that are multiples of four because the compressor works with 4-by-4
cells of pixels. For each frame, the compressor begins with the cell in the
upper-left corner and then proceeds from left to right. The compressor
processes rows of cells in this way, moving from the top of the frame to the
bottom.

When the compressor encodes a cell without reference to a cell in a preceding
frame, it uses a four-byte cell code to represent the content of that cell. This cell
code specifies two colors and includes a 16-bit bit mask that indicates which of
the two colors should be used to represent each pixel in the cell. See

Figure 15-1.

Index into table of chrominance values

16-bit mask ‘

Ce/Cr YIY

Index into table of luminance values

Figure 15-1 Cell Code
The two colors are encoded as follows. The compressor calculates the average

C, and C, values for the 4-by-4 block. Then, it calculates an index into a table of
256 vectors in which each vector looks like the one shown in Figure 15-2.

XIL Programmer’s Guide—August 1994



15

Byte 0 Byte 1

Cg value Cg value

Figure 15-2 Vectors in Chrominance Table

The values in the vector pointed to by the index are the pair of values in the
table nearest to the mean C, and C, values for the cell. The compressor writes
the index to this vector to the third byte of the cell code.

The compressor also analyzes the luminance values in the cell. First, it
calculates the mean luminance for the cell. Second, it partitions the 16
luminance values in the cell into those values that fall below the mean and
those that fall above the mean. Then, it calculates the average luminance in the
two partitions.

After arriving at the average luminance values for the two partitions, the
compressor calculates an index into a table of vectors of the form shown in
Figure 15-3.

Byte 0 Byte 1

Yo value Y, value

Figure 15-3 Vectors in Luminance Table

The values in the vector pointed to by the index are the pair of values in the
table closest to the average luminance values for the two partitions. The
compressor then writes the index to this vector to the fourth byte of the cell
code.

The first color for a cell consists of the first byte of the cell’s luminance vector
and the chrominance values in the cell’s chrominance vector. The second color
consists of the second byte of the cell’s luminance vector and the same
chrominance values.

CellB Codec 299



15

300

Skip Codes

The bit mask shown in Figure 15-1 is filled out in this way. Each bit in the mask
is associated with a pixel in the cell. If the luminance value for a pixel is below
the mean luminance value for the cell, its bit is set to 0. This pixel will be
represented by the first color when the cell is decompressed. If a pixel’s
luminance value is above the mean, its bit is set to 1.

Because each cell code represents the values of 16 pixels using 32 bits,
compression using cell codes alone leads to a compression rate of 2 bits per
pixel. To better this compression rate, the CellB compressor uses skip codes to
achieve interframe compression.

The CellB compressor encodes the first image in a sequence using cell codes
exclusively. But after the first image, the compressor begins looking for cells in
the current image that match—within a certain tolerance—the corresponding
cells in the preceding image. Anywhere from 1 to 32 consecutive cells that
match their counterparts in the previous image can be represented by a single
1-byte skip code.

The only restriction on the use of skip codes is that the cell at a particular set of
coordinates can not be skipped indefinitely. There are a couple of reasons for
this restriction. First, a user might join a videoconference that is already in
progress. Cells represented by skip codes in the first image he receives will not
be displayed correctly, and this problem must be corrected within a certain
period of time. Similarly, if the CellB bytestream is being sent over an
unreliable transport and a packet of data is lost, the period of the resulting
error should be limited.

The policy concerning skip codes is that a particular cell must be updated at
least every n frames, where n is an implementation-specific maximum. The
exact value used is selected randomly for each cell each time that cell is
encoded using a cell code. A random number is used to prevent the periodic
bit-rate increase that might result were each cell to be updated at a fixed
interval.

In a typical videoconference, about 80 percent of the cells in the average frame
are represented by skip codes. This ratio leads to an average compression rate
of about .8 bits per pixel.

XIL Programmer’s Guide—August 1994



