
Macromedia Flash (SWF)
File Format Specification
Version 7

Trademarks

Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver,
Authorware, Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage
Designer, Backstage Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, Contribute, Design in Motion,
Director, Director Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000,
Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio,
Generator Dynamic Graphics Server, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live Effects,
MacRecorder Logo and Design, Macromedia, Macromedia Contribute, Macromedia Coursebuilder for Dreamweaver,
Macromedia M Logo & Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker,
Multimedia is the Message, Object Authoring, Power Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit,
ShockRave, Shockmachine, Shockwave, shockwave.com, Shockwave Remote, Shockwave Internet Studio, Showcase, Tools to
Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra are trademarks of Macromedia, Inc. and
may be registered in the United States or in other jurisdictions including internationally. Other product names, logos, designs,
titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or tradenames of Macromedia, Inc.
or other entities and may be registered in certain jurisdictions including internationally.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

This guide contains links to third-party Web sites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party Web site mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2002-2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc.

CONTENTS
INTRODUCTION: Macromedia Flash (SWF) File Format Specification 9

The SWF Header . 10
SWF File Structure . 11
Tag Format . 11
Definition and Control Tags . 12
Tag Ordering in SWF . 12
The Dictionary . 12
Processing a SWF File . 13
File Compression Strategy . 14
Summary. 14

CHAPTER 1: What’s New in Macromedia Flash (SWF) File Format 7 15

ActionScript extensions . 15
New video format . 15
Runtime ActionScript controls . 16
SetTabIndex . 16
ClipEventConstruct . 16
Small text rendering . 16

CHAPTER 2: Macromedia Flash (SWF) File Format 6 . 17

File compression . 17
Unicode support . 17
Named anchors . 17
ActionScript extensions . 18
New audio and video formats . 18
The FLV file format . 19
Improved documentation . 19

CHAPTER 3: Basic Data Types . 21

Coordinates and Twips . 21
Integer Types and Byte Order . 21
Fixed Point Numbers. 22
Bit Values . 22

Using Bit Values . 23
String Values . 24
3

Language Code . 25
RGB Color Record . 25
RGBA Color with Alpha Record . 26
Rectangle Record. 26
Matrix Record . 27
Color Transform Record . 28
Color Transform with Alpha Record . 29

CHAPTER 4: The Display List . 31

Clipping Layers . 32
Using the Display List . 33
Display List Tags . 34

PlaceObject . 34
PlaceObject2 . 34
ClipEventFlags . 37
RemoveObject . 39
RemoveObject2 . 39
ShowFrame. 39

CHAPTER 5: Control Tags . 41

SetBackgroundColor . 41
FrameLabel . 41
Protect. 42
ExportAssets . 43
ImportAssets . 44
EnableDebugger . 44
EnableDebugger2 . 45
ScriptLimits. 45
SetTabIndex . 45

CHAPTER 6: Actions . 47

SWF 3 Action Model . 47
SWF 3 Actions . 48

SWF 4 Action Model . 51
The Program Counter . 51
SWF 4 Actions . 52
Stack Operations . 54
Arithmetic Operators . 55
Numerical Comparison . 56
Logical Operators . 57
String Manipulation . 58
Type Conversion . 60
Control Flow . 62
Variables . 63
Movie Control . 64
Utilities. 69
4 Contents

SWF 5 Action Model . 69
SWF 5 Actions . 70
ScriptObject Actions . 71
Type Actions. 79
Math Actions . 80
Stack Operator Actions. 81

SWF 6 Action Model . 84
SWF 6 Actions . 84

SWF 7 Action Model . 87
SWF 7 Actions . 87

CHAPTER 7: Shapes . 93

Shape Overview. 93
Shape Example . 94
Shape Structures . 95

Fill Styles . 95
Line Styles . 96
Shape structures . 97
Shape Records . 98
Edge Records . 101
Shape Tags . 104

CHAPTER 8: Gradients . 105

Gradient Transformations . 105
Gradient Control Points . 106
Gradient Structures . 106

GRADIENT . 106
GRADRECORD . 107

CHAPTER 9: Bitmaps . 109

DefineBits . 109
JPEGTables . 110
DefineBitsJPEG2 . 110
DefineBitsJPEG3 . 111
DefineBitsLossless . 111
DefineBitsLossless2 . 113

CHAPTER 10: Shape Morphing . 115

DefineMorphShape . 116
MorphFillStyles . 117
Morph Gradient Values . 118

MORPHGRADIENT . 118
MORPHGRADRECORD . 119

Morph Line Styles . 119
MORPHLINESTYLES . 119
MORPHLINESTYLE . 119
Contents 5

CHAPTER 11: Fonts and Text . 121

Glyph Text and Device Text . 121
Static Text and Dynamic Text . 121
Glyph Text . 122

Glyph Definitions . 122
The EM Square . 123
Converting TrueType fonts to SWF glyphs. 123
Kerning and Advance Values. 124
DefineFont and DefineText . 124
Static Glyph Text Example . 125

Font Tags . 125
DefineFont . 125
DefineFontInfo. 126
Western Indirect Fonts . 128
Japanese Indirect Fonts . 128
DefineFontInfo2. 129
DefineFont2 . 130
Kerning Record . 132

Static Text Tags . 133
DefineText . 133
Text Records . 133

Dynamic Text Tags . 136
DefineEditText . 136

CHAPTER 12: Sounds . 139

Event Sounds . 139
DefineSound . 140
StartSound . 141
Sound Styles . 142

Streaming Sound . 143
SoundStreamHead . 144
SoundStreamHead2 . 145
SoundStreamBlock . 146
Frame Subdivision for Streaming Sound . 147

ADPCM Compression . 149
ADPCM Sound Data . 150

MP3 Compression . 151
MP3 Sound Data . 151
MP3 Frame . 152

Nellymoser Compression. 154
6 Contents

CHAPTER 13: Buttons. 155

Button States . 155
Button Tracking . 156
Events, State Transitions and Actions . 156
Button Tags. 157

Button Record . 157
DefineButton . 158
DefineButton2 . 159
DefineButtonCxform . 161
DefineButtonSound . 161

CHAPTER 14: Sprites and Movie Clips . 163

Sprite Names. 163
DefineSprite . 164

CHAPTER 15: Video . 165

Sorenson H.263 Bitstream Format . 165
Summary of Differences from H.263 . 166
Video Packet. 166
Macro Block. 168
Block Data . 169

Screen Video Bitstream Format . 169
Block Format . 169
Video Packet. 171
Image Block . 171

SWF Video Tags . 172
FLV File Format . 173

FLV Tags . 175
Audio Tags . 176
Video Tags . 177

APPENDIX: Flash Uncovered: A Simple Macromedia Flash (SWF)
 File Dissected. 179
Contents 7

8 Contents

INTRODUCTION
Macromedia Flash (SWF)
File Format Specification
The Macromedia Flash file format (SWF) (pronounced “swiff ”) delivers vector graphics and
animation over the Internet to the Macromedia Flash Player. The SWF file format is designed to
be a very efficient delivery format, not a format for exchanging graphics between graphics editors.
It is designed to meet the following goals:

On-screen display The format is primarily intended for on-screen display and supports
anti-aliasing, fast rendering to a bitmap of any color format, animation, and interactive buttons.

Extensibility The format is a tagged format, so it can be evolved with new features while
maintaining backward compatibility with earlier versions of Flash Player.

Network delivery The format can travel over a network with limited and unpredictable
bandwidth. The files are compressed to be small and support incremental rendering through
streaming. SWF is a binary format and is not human readable like HTML. SWF uses techniques
such as bit-packing and structures with optional fields to minimize file size.

Simplicity The format is simple so that Flash Player is small and easily ported. Also, Flash
Player depends upon only a limited set of operating system features.

File independence The files display without any dependence on external resources such
as fonts.

Scalability The files work well on limited hardware, and can take advantage of better hardware
when it is available. This is important because computers have different monitor resolutions and
bit depths.

Speed The files render at a high quality very quickly.

Scriptability The format includes tags that provide sequences of byte codes to be interpreted
by a stack machine. The byte codes support the ActionScript language. Flash Player provides a
runtime ActionScript object model that allows interaction with drawing primitives, servers, and
features of Flash Player.

SWF files have the extension .swf and a MIME type of application/x-shockwave-flash.
9

The SWF format has gone through several versions. Through SWF version 5, substantial
additions were made to the SWF tag set. Starting with SWF version 6 and later, there is less
change in the SWF format, as more and more new Flash features are implemented partly or
entirely at the ActionScript level. For this reason, anyone planning to generate SWF content that
uses newer features should become familiar with the ActionScript object model that Flash Player
exposes. The best reference for this information is O’Reilly’s ActionScript: the Definitive Guide, by
Colin Moock.

The SWF Header

All SWF files begin with the following header:

The header begins with a three-byte Signature of either 0x46, 0x57, 0x53 (“FWS”) or 0x46,
0x57, 0x43 (“CWS”). An FWS signature indicates an uncompressed SWF file; CWS indicates
that the entire file after the first 8 bytes (that is, after the FileLength field) has been compressed
using the open standard ZLIB. The data format used by the ZLIB library is described by Request
for Comments (RFCs) documents 1950 to 1952. CWS file compression is only permitted in
SWF version 6 or later.

A one-byte Version number follows the signature. The version number is not an ASCII character,
but an 8-bit number. For example, for SWF 4 the version byte is 0x04, not the ASCII character
‘4’ (0x35).

The FileLength field is the total length of the SWF file including the header. If this is an
uncompressed SWF (FWS signature), the FileLength field should exactly match the file size. If
this is a compressed SWF (CWS signature), the FileLength field indicates the total length of the
file after decompression, and thus will generally not match the file size. Having the uncompressed
size available can make the decompression process more efficient.

The FrameSize field defines the width and height of the movie. This is stored as a RECT
structure, meaning that its size may vary according to the number of bits needed to encode the
coordinates. The FrameSize RECT always has Xmin and Ymin of 0; the Xmax and Ymax
members define the width and height (see Using Bit Values).

SWF File Header

Field Type* Comment

Signature UI8 Signature byte:
“F” indicated uncompressed
“C” indicates compressed (SWF 6 and later only)

Signature UI8 Signature byte always “W”

Signature UI8 Signature byte always “S”

Version UI8 Single byte file version (for example, 0x06 for SWF 6)

FileLength UI32 Length of entire file in bytes

FrameSize RECT Frame size in twips

FrameRate UI16 Frame delay in 8.8 fixed number of frames per second

FrameCount UI16 Total number of frames in movie

* The types are defined in Basic Data Types.
10 Introduction: Macromedia Flash (SWF) File Format Specification

The FrameRate is the desired playback rate in frames per second. This rate is not guaranteed if the
SWF file contains streaming sound data, or Flash Player is running on a slow CPU.

The FrameCount is the total number of frames in this SWF movie.

SWF File Structure

Following the header is a series of tagged data blocks. All tags share a common format, so any
program parsing a SWF file can skip over blocks it does not understand. Data inside the block can
point to offsets within the block, but can never point to an offset in another block. This enables
tags to be removed, inserted, or modified by tools that process a SWF file.

SWF File Structure

Tag Format

Each tag begins with a tag type and a length. There are two tag header formats, short and long.
Short tag headers are used for tags with 62 bytes of data or less. Long tag headers can be used for
any tag size up to 4GB, far larger than is presently practical.

Note: The TagCodeAndLength field is a two-byte word, not a bitfield of 10 bits followed by a bitfield
of 6 bits. The little-endian byte ordering of SWF makes these two layouts different.

The length specified in the TagCodeAndLength field does not include the RECORDHEADER
that starts a tag.

If the tag is 63 bytes or longer, it is stored in a long tag header. The long tag header consists of a
short tag header with a length of 0x3f, followed by a 32-bit length.

RECORDHEADER (short)

Field Type Comment

TagCodeAndLength UI16 Upper 10 bits: tag type
Lower 6 bits: tag length

RECORDHEADER (long)

Field Type Comment

TagCodeAndLength UI16 Tag type and length of 0x3F
Packed together as in short header

Length UI32 Length of tag

Header Tag Tag Tag End tag
...
Tag Format 11

Definition and Control Tags

There are two categories of tags in SWF:

Definition Tags These tags define the content of the SWF movie – the shapes, text, bitmaps,
sounds, and so on. Each definition tag assigns a unique ID called a character ID to the content it
defines. Flash Player then stores the character in a repository called the dictionary. Definition
tags, by themselves, do not cause anything to be rendered.

Control Tags These tags create and manipulate rendered instances of characters in the
dictionary, and control the flow of the movie.

Tag Ordering in SWF

Generally speaking, tags in a SWF can occur in any order. However, there are a few rules that
must be observed:

1 A tag should only depend on tags that come before it. A tag should never depend on a tag that
comes later in the file.

2 A definition tag that defines a character must occur before any control tag that refers to that
character.

3 Streaming sound tags must be in order. Out-of-order streaming sound tags will result in the
sound being played out of order.

4 The End tag is always the last tag in the SWF file.

The Dictionary

The dictionary is a repository of characters that have been defined, and are available for use by
Control Tags. The process of building and using the dictionary is as follows:

1 A definition tag defines some content, such as a shape, font, bitmap, or sound.
2 A unique CharacterId is assigned to the content by the definition tag.
3 The content is saved in the dictionary under the CharacterId.
4 A control tag retrieves the content from the dictionary using the CharacterId, and performs

some action on the content, such as displaying a shape, or playing a sound.
Every definition tag must specify a unique ID. Duplicate IDs are not allowed. Typically, the first
CharacterId is 1, the second CharacterId is 2, and so on. Character zero is special and considered
a null character.

Control tags are not the only tags that reference the dictionary. Definition tags can use characters
from the dictionary to define more complex characters. For example, the DefineButton and
DefineSprite tags refer to other characters to define their contents. The DefineText tag can refer
to font characters to select different fonts for the text.
12 Introduction: Macromedia Flash (SWF) File Format Specification

The following diagram illustrates a typical interaction between definition tags, control tags and
the dictionary:

* See The Display List.

Processing a SWF File

Flash Player processes all the tags in a SWF file until a ShowFrame tag is encountered. At this
point, the display list is copied to the screen and Flash Player is idle until it is time to process the
next frame. The contents of the first frame are the cumulative effect of performing all the control
tag operations before the first ShowFrame tag. The contents of the second frame are the
cumulative effect of performing all the control tag operations from the beginning of the file to the
second ShowFrame tag, and so on.

DefineShape as character 1

Tags in SWF file

Character 1
Shape

Character 2
Sound

Character 3
Font

Character 4
Text

Character 5
Morph

Contol tag

Definition tag

Character

Dictionary

DefineSound as character 2

DefineFont as character 3

PlaceObject character 1
Add shape to display list*

DefineText as character 4
Uses font defined as character 3

PlaceObject character 4
Add text to display list*

ShowFrame
Render contents of the display*

DefineMorphShape as character 5

StartSound character 2

PlaceObject character 5
Add Morph to display list*

ShowFrame
Render contents of the display*
Processing a SWF File 13

File Compression Strategy

Since SWF files are frequently delivered over a network connection, it is important that they be as
compact as possible. There are several techniques that are used to accomplish this. Here are some
things to look out for:

Reuse The structure of the character dictionary makes it very easy to reuse elements in a SWF
file. For example, a shape, button, sound, font, or bitmap can be stored in a file once and
referenced many times.

Compression Shapes are compressed using a very efficient delta encoding scheme, often the
first coordinate of a line is assumed to be the last coordinate of the previous one. Distances are
also often expressed relative to the last position.

Default values Some structures like matrices and color transforms have common fields that are
used more often than others. For example, for a matrix, the most common field is the translation
field. Scaling and rotation are less common. Therefore if the scaling field is not present, it is
assumed to be 100%. If the rotation field is not present, it is assumed that there is no rotation.
This use of default values helps to minimize file sizes.

Change Encoding As a rule, SWF files only store the changes between states. This is reflected
in shape data structures and in the place/move/remove model used by the display list.

Shape Data Structure The shape data structure uses a unique structure to minimize the size of
shapes and to render anti-aliased shapes very efficiently on the screen.

Summary

A SWF file is made up of a header, followed by a number of tags. There are two types of tags,
Definition Tags and Control Tags. Definition Tags define the objects known as characters,
which are stored in the Dictionary. Control Tags manipulate characters, and control the flow
of the movie.
14 Introduction: Macromedia Flash (SWF) File Format Specification

CHAPTER 1
What’s New in Macromedia Flash (SWF)

File Format 7
This chapter describes the new features in version 7 of the SWF specification.

ActionScript extensions

New ActionScript bytecode ActionDefineFunction2 expands upon the existing
ActionDefineFunction, now allowing a function to store parameters and local variables in
registers. (The ActionDefineFunction bytecode is rarely used in SWF 7 and later and has been
superseded by ActionDefineFunction2.) ActionDefineFunction2 also provides control over the
creation and storage of common variables this, arguments, super, _root, _parent and
_global. To support these improvements, ActionStoreRegister now can access up to 256
registers with the use of bytecode ActionDefineFunction2.

To improve the compliance of ActionScript with the ECMA-262 standard, and to provide
greater support of object-oriented programming, SWF 7 introduces bytecodes ActionExtends,
ActionCastOp, and ActionImplementsOp, the only file format changes made in order to support
ActionScript 2.0. ActionExtends offers the ability to create a relationship between two classes,
called the subclass and the superclass. With ActionCastOp, Flash Player 7 or later converts an
object of one type to another. ActionImplementsOp specifies the interfaces that an object
implements, for use by ActionCastOp.

With the SWF 7 format, ActionInstanceOf will now report whether an object implements
an interface.

ActionScript now employs exception handling with bytecodes ActionTry and ActionThrow.
ActionTry declares handlers for exceptional conditions, and ActionThrow pops an error value to
be thrown.

New video format

Flash Player 7 supports a simple new lossless video codec called Screen Video Bitstream Format,
optimized for captures of computer screens in motion. ScreenVideo, like Sorenson H.263
Bitstream Format, can appear in both SWF files and FLV files.

Flash Player 7 can play back FLV files directly, without the use of the RTMP protocol or Flash
Communication Server MX.
15

Runtime ActionScript controls

The new ScriptLimits tag provides control over the maximum recursion depth and the number of
seconds before possible script time-out.

SetTabIndex

The new SetTabIndex tag sets the index of an object within the Flash Player tab order.

ClipEventConstruct

The ClipEventFlags sequence now includes ClipEventConstruct to signal the construct event, in
addition to the already existing ClipEventInitialize.

Small text rendering

Previously, in certain cases, small anti-aliased text would appear blurry in Flash Player. With the
new flag FontFlagsSmallText in the DefineFontInfo, DefineFontInfo2, and DefineFont2 tags,
Flash Player 7 and later aligns character glyphs on pixel boundaries for dynamic and input text.
16 Chapter 1: What’s New in Macromedia Flash (SWF) File Format 7

CHAPTER 2
Macromedia Flash (SWF) File Format 6
This chapter describes the features introduced in version 6 of the SWF specification.

File compression

SWF version 6 or later files can be compressed to reduce their size. A different file header
signature (CWS instead of FWS) signals this choice. The compression used is the popular
ZLIB standard.

Unicode support

SWF version 6 or later files support Unicode text.

SWF version 6 adds tag DefineFontInfo2. This is a minor extension to the DefineFontInfo tag;
DefineFontInfo2 adds a language code field. Similarly, the DefineFont2 tag uses a previously
reserved byte to store a language code. Language codes are used for line-breaking considerations,
and for choosing fallback fonts when a specified device font is unavailable.

The DefineFontInfo, DefineFont2, and DefineFontInfo2 tags have different usage rules in SWF
version 6 or later files. The ANSI and shift-JIS encoding options for character tables have been
deprecated, and all character tables in these tags are encoded using UCS-2.

Device font names in SWF version 6 or later files are specified using UTF-8 encoding rather than
the locale-specific encodings previously used.

The common STRING type in SWF version 6 or later files uses UTF-8 encoding rather than the
ANSI or shift-JIS encodings previously used.

Named anchors

SWF version 6 introduces named anchors, a frame label that allows a frame in a SWF movie to be
seekable using a hash (# symbol) in the top-level browser URL, similar to named anchors in
HTML pages. Named anchors are encoded in SWF version 6 or later files by including an extra
byte after the null terminator of the STRING in the existing FrameLabel tag.
17

ActionScript extensions

For SWF version 6 and later files, the DoInitAction Tag contains ActionScript bytecodes just like
the SWF 3 Actions. However, while the actions specified in a DoAction tag are placed on a stack
and not executed until after all drawing for the frame has completed, the actions in a
DoInitActions tag are executed as soon as the tag is encountered. DoInitAction is used to
implement the #initclip pragma in the ActionScript language. This is primarily useful for calling
registerClass to associate a class definition with a movie clip symbol before placing an instance of
that symbol on the Stage.

Button Movie Clips are a new concept in Flash 6. This means that instances of movie clip
symbols are allowed to have the same kinds of event handlers as instances of Button symbols, in
addition to the traditional Movie Clip handlers. Thus, the event-type constants for Button-style
event handlers can be used in the Clip Actions of a PlaceObject2 tag that targets a movie clip
symbol in SWF version 6 or later files.

SWF version 6 adds ActionScript bytecode, ActionStrictEquals. This implements the new strict
equality operator (===) in the ActionScript language.

SWF version 6 adds ActionScript bytecodes ActionGreater and ActionStringGreater. These
implement the exact opposite of the ActionLess and ActionStringLess bytecodes. This eliminates
the need to perform greater-than comparisons by doing less-than comparisons followed by logical
negation. This improves performance and can also eliminate some unintended side effects of
changing the order of evaluation in ActionScript.

SWF version 6 adds ActionScript bytecode, ActionInstanceOf. This implements the instanceof
operator in the ActionScript language.

SWF version 6 adds ActionScript bytecode, ActionEnumerate2. This works like
ActionEnumerate, but operates on an object-typed stack argument rather than a variable name.

Starting with SWF version 6, the EnableDebugger tag has been deprecated in favor of the
EnableDebugger2.

New audio and video formats

The existing DefineSound and SoundStreamBlock tags support a new codec option in SWF
version 6 or later files: NellyMoser Asao, optimized for low bitrates (see Nellymoser Compression).

Two tags, DefineVideoStream and VideoFrame, allow video to be embedded in SWF version 6 or
later files. For SWF version 6, a single video codec, Sorenson Spark, is available (see Sorenson
H.263 Bitstream Format).
18 Chapter 2: Macromedia Flash (SWF) File Format 6

The FLV file format

SWF content can perform dynamic two-way audio, video, and data interaction with Flash
Communication Server MX. In one form of this interaction, Flash Communication Server can
serve pre-recorded or streaming files of the FLV format, which encodes synchronized audio,
video, and data. The audio and video formats used within FLV are the same as those used within
SWF. The FLV format, like the SWF format, is an open standard documented by Macromedia.

Improved documentation

With the release of the SWF 6 specification, the documentation of the following SWF file format
chapters was extensively revised to improve clarity and detail:

• Sounds
• Fonts and Text
• Bitmaps
• Clip actions in PlaceObject2
• Button actions in DefineButton2
Improved documentation 19

20 Chapter 2: Macromedia Flash (SWF) File Format 6

CHAPTER 3
Basic Data Types
This section describes the basic data types that make up the more complex data structures in the
Macromedia Flash (SWF) File Format. All other structures in SWF are built on these
fundamental types.

Coordinates and Twips

SWF stores all x-y coordinates as integers, usually in a unit of measurement called a twip. In the
SWF format, a twip is 1/20th of a logical pixel. A logical pixel is the same as a screen pixel when
the movie is played at 100%—that is, without scaling.

For example, a rectangle 800 twips wide by 400 twips high is rendered as 40 by 20 logical pixels.
Fractional pixel sizes are approximated with antialiasing. A rectangle 790 by 390 twips (39.5 by
19.5 pixels) appears to have slightly blurred edges.

Twips are a good compromise between size and precision. They provide sub-pixel accuracy for
zooming and precise placement of objects, while consuming very few bits per coordinate.

Coordinates in SWF use the traditional graphics axes: x is horizontal and proceeds from
minimum values at the left to maximum values at the right, and y is vertical and proceeds from
minimum values at the top to maximum values at the bottom.

Integer Types and Byte Order

SWF uses 8-bit, 16-bit and 32-bit, signed and unsigned integer types. All integer values are stored
in the SWF file using little-endian byte order: the least significant byte is stored first, and the most
significant byte is stored last, in the same way as the Intel x86 architecture. The bit order within
bytes in SWF is big-endian: the most significant bit is stored first, and the least significant bit is
stored last.

For example:

The 32-bit value 0x456e7120 is stored as: 20 71 6e 45

The 16-bit value 0xe712 is stored as: 12 e7

All integer types must be byte-aligned. That is, the first bit of an integer value must be stored in
the first bit of a byte in the SWF file.
21

Signed integers are represented using traditional 2’s-complement bit patterns. These are the signed
integer representations used on most modern platforms. In the 2’s complement system, negative
numbers have 1 as the first bit, and zero and positive numbers have 0 as the first bit. A negative
number -n is represented as the bitwise opposite of the positive/zero number n-1.

Fixed Point Numbers

Fixed values are 32-bit 16.16 signed fixed-point numbers. That is, the high 16 bits represent the
number before the decimal point, and the low 16 bits represent the number after the decimal
point. FIXED values are stored like 32-bit integers in the SWF file (using little-endian byte order)
and must be byte-aligned.

For example:

The real value 7.5 is equivalent to: 0x0007.8000

This is stored in the SWF file as: 00 80 07 00

Bit Values

Bit values are variable-length bit fields that can represent three types of numbers:

1 Unsigned integers
2 Signed integers
3 Signed 16.16 fixed-point values.

Integer Types

Type Comment

SI8 Signed 8-bit integer value

SI16 Signed 16-bit integer value

SI32 Signed 32-bit integer value

SI8[n] Signed 8-bit array - n is number of array elements

SI16[n] Signed 16-bit array - n is number of array elements

UI8 Unsigned 8-bit integer value

UI16 Unsigned 16-bit integer value

UI32 Unsigned 32-bit integer value

UI8[n] Unsigned 8-bit array - n is number of array elements

UI16[n] Unsigned 16-bit array - n is number of array elements

UI32[n] Unsigned 32-bit array - n is number of array elements

FIXED

Type Comment

FIXED 32-bit 16.16 fixed-point number
22 Chapter 3: Basic Data Types

Bit values do not have to be byte-aligned. Other types (such as UI8 and UI16) are always byte-
aligned. If a byte-aligned type follows a bit value, the last byte containing the bit value is padded
out with zeros.

Below is a stream of 64 bits, made up of 9-bit values of varying length, followed by a UI16 value:

The bit stream begins with a 6-bit value (BV1) followed by a 5-bit value (BV2) which is spread
across Byte1 and Byte2. BV3 is spread across Byte2 and Byte3, while BV4 is wholly contained
within Byte3. Byte 5 contains two bit values: BV7 and BV8. BV9 is followed by a byte-aligned
type (UI16) so the last four bits of Byte 6 are padded with zeros.

When an unsigned bit value is expanded into a larger word size the leftmost bits are filled with
zeros. When a signed bit value is expanded into a larger word size the high bit is copied to the left
most bits.

This is called sign extension. For example, the 4-bit unsigned value UB[4] = 1110 would be
expanded to a 16-bit value like this: 0000000000001110 = 14. The same value interpreted as a
signed value, SB[4] = 1110 would be expanded to 1111111111111110 = –2.

Signed bit values are similar but must take account of the sign bit. The signed value of 35 is
represented as SB[7] = 0100011. The extra zero bit is required otherwise the high-bit would be
sign-extended and the value would be interpreted as negative.

Fixed-point bit values are 32-bit 16.16 signed fixed-point numbers. That is, the high 16 bits
represent the number before the decimal point, and the low 16 bits represent the number after the
decimal point. A fixed-point bit value is identical to a signed bit value, but the interpretation is
different. For example, a 19-bit signed bit value of 0x30000 is interpreted as 196608 decimal. The
19-bit fixed-point bit value 0x30000 is interpreted as 3.0. The format of this value is effectively
3.16 rather than 16.16.

Using Bit Values

Bit values are stored using the minimum number of bits possible for the range needed. Most bit
value fields use a fixed number of bits. Some use a variable number of bits, but in all such cases,
the number of bits to be used is explicitly stated in another field in the same structure. In these
variable-length cases, SWF-generating applications must determine the minimum number of bits
necessary to represent the actual values that will be specified. Keep in mind that for signed bit
values, if the number to be encoded is positive, an extra bit is necessary in order to preserve the
leading 0; otherwise sign extension will change the bit value into a negative number.

Bit Values

Type Comment

SB[nBits] Signed bit value (nBits is the number of bits used to store the value)

UB[nBits] Unsigned bit value (nBits is the number of bits used to store the value)

FB[nBits] Signed fixed-point bit value (nBits is the number of bits used to store the value)
Bit Values 23

As an example of variable-sized bit values, consider the RECT structure:

The Nbits field determines the number of bits used to store the coordinate values Xmin, Xmax,
Ymin, and Ymax. Say the coordinates of the rectangle were as follows:
Xmin = 127 decimal = 1111111 binary
Xmax = 260 decimal = 10000100 binary
Ymin = 15 decimal = 1111 binary
Ymax = 514 decimal = 1000000010 binary

Nbits is calculated by finding the coordinate that requires the most bits to represent. In this case
that value is 514 (01000000010 binary) which requires 11 bits to represent. So the rectangle is
stored as shown below:

String Values

A string value represents a null terminated character string. The format for a string value is a
sequential list of bytes terminated by the null character byte.

In SWF version 5 or earlier, STRING values are encoded using either ANSI (which is a superset
of ASCII) or shift-JIS (a Japanese encoding). There is no way to indicate which encoding is used;
instead, the decoding choice is made according to the locale in which Flash Player is running.
This means that text content in SWF 5 or earlier can only be encoded in ANSI or shift-JIS, and
the target audience must be known during authoring—otherwise garbled text will result.

RECT

Field Type Comment

Nbits UB[5] Bits in each rect value field

Xmin SB[Nbits] x minimum position for rect

Xmax SB[Nbits] x maximum position for rect

Ymin SB[Nbits] y minimum position for rect

Ymax SB[Nbits] y maximum position for rect

RECT

Field Type and Value Comment

Nbits UB[5] = 1011 Bits required (11)

Xmin SB[11] = 00001111111 x minimum in twips (127)

Xmax SB[11] = 00010000100 x maximum in twips (260)

Ymin SB[11] = 00000001111 y minimum in twips (15)

Ymax SB[11] = 01000000010 y maximum in twips (514)

STRING

Field Type Comment

String UI8[zero or more] Non-null string character data

StringEnd UI8 Marks end of string; always zero
24 Chapter 3: Basic Data Types

In SWF version 6 or later, STRING values are always encoded using the Unicode UTF-8
standard. This is a multibyte encoding; each character is composed of between one and four
bytes. UTF-8 is a superset of ASCII; the byte range 0-127 in UTF-8 exactly matches the ASCII
mapping, and all ASCII characters 0-127 are represented by just one byte. UTF-8 guarantees that
whenever a character other than character 0 (the null character) is encoded using more than one
byte, none of those bytes will be zero. This avoids the appearance of internal null characters in
UTF-8 strings, meaning that it remains safe to treat null bytes as string terminators, just as for
ASCII strings.

Language Code

A language code identifies a spoken language that applies to text. Language codes are associated
with font specifications in SWF.
Note: A language code does not specify a text encoding; it specifies a spoken language.

Language codes are used by Flash Player to determine line-breaking rules for dynamic text, and to
choose fallback fonts when a specified device font is unavailable. There may in the future be other
uses for language codes.

A language code of zero means ‘no language’. This will result in behavior that is dependent on the
locale in which Flash Player is running.

At the time of writing, the following language codes are recognized by Flash Player:

1: Latin (the western languages covered by Latin-1: English, French, German, etc.)

2: Japanese

3: Korean

4: Simplified Chinese

5: Traditional Chinese

RGB Color Record

The RGB record represents a color as a 24-bit red, green, and blue value.

LANGCODE

Field Type Comment

LanguageCode UI8 Language code (see below)

RGB

Field Type Comment

Red UI8 Red color value

Green UI8 Green color value

Blue UI8 Blue color value
RGB Color Record 25

RGBA Color with Alpha Record

The RGBA record represents a color as 32-bit red, green, blue and alpha value. An RGBA color
with an alpha value of 255 is completely opaque. An RGBA color with an alpha value of zero is
completely transparent. Alpha values between zero and 255 are partially transparent.

Rectangle Record

A rectangle value represents a rectangular region defined by a minimum x- and y-coordinate
position and a maximum x- and y-coordinate position.

RGBA

Field Type Comment

Red UI8 Red color value

Green UI8 Green color value

Blue UI8 Blue color value

Alpha UI8 Transparency color value

RECT

Field Type Comment

Nbits UB[5] Bits used for each subsequent field

Xmin SB[Nbits] x minimum position for rectangle in twips

Xmax SB[Nbits] x maximum position for rectangle in twips

Ymin SB[Nbits] y minimum position for rectangle in twips

Ymax SB[Nbits] y maximum position for rectangle in twips
26 Chapter 3: Basic Data Types

Matrix Record

The MATRIX record represents a standard 2x3 transformation matrix of the sort commonly used
in 2D graphics. It is used to describe the scale, rotation and translation of a graphic object.

The ScaleX, ScaleY, RotateSkew0 and RotateSkew1 fields are stored as 16.16 fixed-point values.
The TranslateX and TranslateY values are stored as signed values in twips.

The MATRIX record is optimized for common cases such as a matrix that performs a translation
only. In this case the HasScale and HasRotate flags are zero, and the matrix only contains the
TranslateX and TranslateY fields.

The mapping from the MATRIX fields to the 2x3 matrix is as follows:

For any coordinates (x, y), the transformed coordinates (x', y') are calculated as follows:
x' = x * ScaleX + y * RotateSkew1 + TranslateX
y' = x * RotateSkew0 + y * ScaleY + TranslateY

MATRIX

Field Type Comment

HasScale UB[1] Has scale values if equal to 1

NScaleBits If HasScale = 1, UB[5] Bits in each scale value field

ScaleX If HasScale = 1, FB[NScaleBits] x scale value

ScaleY If HasScale = 1, FB[NScaleBits] y scale value

HasRotate UB[1] Has rotate and skew values if equal to 1

NRotateBits If HasRotate = 1, UB[5] Bits in each rotate value field

RotateSkew0 If HasRotate = 1, FB[NRotateBits] First rotate and skew value

RotateSkew1 If HasRotate = 1, FB[NRotateBits] Second rotate and skew value

NTranslateBits UB[5] Bits in each translate value field

TranslateX SB[NTranslateBits] x translate value in twips

TranslateY SB[NTranslateBits] y translate value in twips

ScaleX RotateSkew0

RotateSkew1 ScaleY

TranslateX TranslateY
Matrix Record 27

The following table describes how the members of the matrix are used for each type of operation:

Color Transform Record

The CXFORM record defines a simple transform that can be applied to the color space of a
graphic object. There are two types of transform possible:

1 Multiplication Transforms
2 Addition Transforms
Multiplication transforms multiply the red, green, and blue components by an 8.8 fixed-point
multiplication term. The fixed-point representation of 1.0 is 0x100 or 256 decimal.

For any color (R,G,B) the transformed color (R', G', B') is calculated as follows:
R' = (R * RedMultTerm) / 256
G' = (G * GreenMultTerm) / 256
B' = (B * BlueMultTerm) / 256

Addition transforms simply add an addition term (positive or negative) to the red, green and blue
components of the object being displayed. If the result is greater than 255, the result is clamped
to 255. If the result is less than zero, the result is clamped to zero.

For any color (R,G,B) the transformed color (R', G', B') is calculated as follows:
R' = max(0, min(R + RedAddTerm, 255))
G' = max(0, min(G + GreenAddTerm, 255))
B' = max(0, min(B + BlueAddTerm, 255))

ScaleX RotateSkew0 RotateSkew1 ScaleY

Rotation Cosine Sine Negative sine Cosine

Scaling Horizontal scaling
component

Nothing Nothing Vertical Scaling
Component

Shear Nothing Horizontal
Proportionality
Constant

Vertical
Proportionality
Constant

Nothing

Reflection Horizontal
Reflection
Component

Nothing Nothing Vertical Reflection
Component
28 Chapter 3: Basic Data Types

Addition and Multiplication transforms can be combined as below. The multiplication operation
is performed first.
R' = max(0, min(((R * RedMultTerm) / 256) + RedAddTerm, 255))
G' = max(0, min(((G * GreenMultTerm) / 256) + GreenAddTerm, 255))
B' = max(0, min(((B * BlueMultTerm) / 256) + BlueAddTerm, 255))

Color Transform with Alpha Record

The CXFORMWITHALPHA record extends the functionality of CXFORM by allowing color
transforms to be applied to the alpha channel, as well as the red, green and blue channels.

There are two types of transform possible:

1 Multiplication Transforms
2 Addition Transforms
Multiplication transforms multiply the red, green, blue and alpha components by an 8.8 fixed-
point value. The fixed-point representation of 1.0 is 0x100 or 256 decimal. Therefore, the result
of a multiplication operation should be divided by 256.

For any color (R,G,B,A) the transformed color (R', G', B', A') is calculated as follows:
R' = (R * RedMultTerm) / 256
G' = (G * GreenMultTerm) / 256
B' = (B * BlueMultTerm) / 256
A' = (A * AlphaMultTerm) / 256

The CXFORMWITHALPHA record is most commonly used to display objects as partially
transparent. This is achieved by multiplying the alpha channel by some value between zero
and 256.

Addition transforms simply add a fixed value (positive or negative) to the red, green, blue and
alpha components of the object being displayed. If the result is greater than 255, the result is
clamped to 255. If the result is less than zero, the result is clamped to zero.

CXFORM

Field Type Comment

HasAddTerms UB[1] Has color addition values if equal to 1

HasMultTerms UB[1] Has color multiply values if equal to 1

Nbits UB[4] Bits in each value field

RedMultTerm If HasMultTerms = 1, SB[Nbits] Red multiply value

GreenMultTerm If HasMultTerms = 1, SB[Nbits] Green multiply value

BlueMultTerm If HasMultTerms = 1, SB[Nbits] Blue multiply value

RedAddTerm If HasAddTerms = 1, SB[Nbits] Red addition value

GreenAddTerm If HasAddTerms = 1, SB[Nbits] Green addition value

BlueAddTerm If HasAddTerms = 1, SB[Nbits] Blue addition value
Color Transform with Alpha Record 29

For any color (R,G,B,A) the transformed color (R', G', B', A') is calculated as follows:
R' = max(0, min(R + RedAddTerm, 255))
G' = max(0, min(G + GreenAddTerm, 255))
B' = max(0, min(B + BlueAddTerm, 255))
A' = max(0, min(A + AlphaAddTerm, 255))

Addition and Multiplication transforms can be combined as below. The multiplication operation
is performed first.
R' = max(0, min(((R * RedMultTerm) / 256) + RedAddTerm, 255))
G' = max(0, min(((G * GreenMultTerm) / 256) + GreenAddTerm, 255))
B' = max(0, min(((B * BlueMultTerm) / 256) + BlueAddTerm, 255))
A' = max(0, min(((A * AlphaMultTerm) / 256) + AlphaAddTerm, 255))

CXFORMWITHALPHA

Field Type Comment

HasAddTerms UB[1] Has color addition values if equal to 1

HasMultTerms UB[1] Has color multiply values if equal to 1

Nbits UB[4] Bits in each value field

RedMultTerm If HasMultTerms = 1, SB[Nbits] Red multiply value

GreenMultTerm If HasMultTerms = 1, SB[Nbits] Green multiply value

BlueMultTerm If HasMultTerms = 1, SB[Nbits] Blue multiply value

AlphaMultTerm If HasMultTerms = 1, SB[Nbits] Alpha multiply value

RedAddTerm If HasAddTerms = 1, SB[Nbits] Red addition value

GreenAddTerm If HasAddTerms = 1, SB[Nbits] Green addition value

BlueAddTerm If HasAddTerms = 1, SB[Nbits] Blue addition value

AlphaAddTerm If HasAddTerms = 1, SB[Nbits] Transparency addition value
30 Chapter 3: Basic Data Types

CHAPTER 4
The Display List
Displaying a frame of a Macromedia Flash (SWF) movie is a three-stage process:

1 Objects are defined with definition tags such as DefineShape, DefineSprite etc. Each object is
given a unique ID called a character, and stored in a repository called the dictionary.

2 Selected characters are copied from the dictionary and placed on the display list. This is the list
of the characters that will be displayed in the next frame.

3 Once complete, the contents of the display list are rendered to the screen with ShowFrame.
Each character on the display list is assigned a depth value. The depth determines the stacking
order of the character. Characters with lower depth values are displayed underneath characters
with higher depth values. A character with a depth value of 1 is displayed at the bottom of the
stack. A character may appear more than once in the display list, but at different depths. There
can be only one character at any given depth.

In SWF 1 and 2, the display list was a flat list of the objects that are present on the screen at any
given point in time. In SWF 3 and later versions the display list is a hierarchical list where an
element on the display can have a list of child elements. For more information, see DefineSprite.

There are five tags used to control the display list:

• PlaceObject Adds a character to the display list.
• PlaceObject2 Adds a character to the display list, or modifies the character at the specified

depth.
• RemoveObject Removes the specified character from the display list.
• RemoveObject2 Removes the character at the specified depth.
• ShowFrame Renders the contents of the display list to the display.

Note: The older tags, PlaceObject and RemoveObject, are rarely used in SWF 3 and
later versions.
31

The following diagram illustrates the display process. First, three objects are defined; a shape, a
text object and a sprite. These objects are given Character IDs and stored in the Dictionary.
Character 1 (the shape) is then placed at depth 1, the bottom of the stack, and will be obscured by
all other characters when the frame is rendered. Character 2 (the text) is placed twice; once at
depth 2, and once at depth 4, the top of the stack. Character 3 (the sprite) is placed at depth 3.

Clipping Layers

Flash supports a special kind of object in the Display List called a clipping layer. A character placed
as a clipping layer is not displayed; rather it clips (or masks) the characters placed above it.
The ClipDepth field in PlaceObject2 specifies the top-most depth that will be masked by the
clipping layer.

For example, if a shape was placed at depth 1 with a ClipDepth of 4, all depths above 1, up to and
including depth 4, will be masked by the shape placed at depth 1. Characters placed at depths
above 4 will not be masked.

DefineShape
Character ID = 1

DefineText
Character ID = 1

DefineSprite
Character ID = 1

Definition

Character ID = 1

Character ID = 2

Character ID = 3

Dictionary

Character ID = 2
Depth = 4

Character ID = 3
Depth = 3

Character ID = 2
Depth = 2

Character ID = 1
Depth = 1

Display List

Top

Bottom

Character ID =4
Depth = 5

Character ID = 3
Depth = 4

Character ID = 3
Depth = 3

Character ID = 2
Depth = 2

Character ID = 1
Depth = 1

ClipDepth = 4

Display List

Clipping Layer

Character masked
by Clipping Layer

Character not masked
by Clipping Layer

Key

Top

Bottom
32 Chapter 4: The Display List

Using the Display List

The following is a step-by-step procedure for creating and displaying a Flash animation:

1 Define each character with a definition tag. Each character is given a unique character ID, and
added to the dictionary.

2 Add each character to the display list with a PlaceObject2 tag. Each PlaceObject2 tag specifies
the character to be displayed, plus the following attributes:
■ A depth value. This controls the stacking order of the character being placed. Characters

with lower depth values appear to be underneath characters with higher depth values. A
depth value of 1 means the character is displayed at the bottom of the stack. There can be
only one character at any given depth.

■ A transformation matrix. This determines the position, scale, factor, and angle of rotation
of the character being placed. The same character may be placed more than once (at
different depths) with a different transformation matrix.

■ An optional color transform. This specifies the color effect applied to the character being
placed. Color effects include transparency and color shifts.

■ An optional name string. This identifies the character being placed for SetTarget actions.
SetTarget is used to perform actions inside sprite objects.

■ An optional ClipDepth value. This specifies the top-most depth that will be masked by the
character being placed.

■ An optional ratio value. This controls how a morph character is displayed when placed. A
ratio of zero displays the character at the start of the morph. A ratio of 65535 displays the
character at the end of the morph.

3 Render the contents of the display list to the screen with a ShowFrame tag.
4 Modify each character on the Display List with a PlaceObject2 tag. Each PlaceObject2 assigns

a new transformation matrix to the character at a given depth. (The character ID is not specified
because there can be only one character for each depth).

5 Display the characters in their new positions with a ShowFrame tag. Repeat steps 4 and 5 for
each frame of the animation.
Note: If a character does not change from frame to frame, there is no need to replace the
unchanged character after each frame.

6 Remove each character from the display list with a RemoveObject2 tag. Only the depth value
is required to identify the character being removed.
Using the Display List 33

Display List Tags

Display list tags are used to add character and character attributes to a display list.

PlaceObject

The PlaceObject tag adds a character to the display list. The CharacterId identifies the character
to be added. The Depth field specifies the stacking order of the character. The Matrix field species
the position, scale and rotation of the character. If the size of the PlaceObject tag exceeds the end
of the transformation matrix, it is assumed that a ColorTransform field is appended to the record.
This specifies a color effect (such as transparency) that is applied to the character. The same
character can be added more than once to the display list with a different depth and
transformation matrix.
Note: PlaceObject is rarely used in SWF 3 and later versions; it has been superseded by
PlaceObject2.

The minimum file format version is SWF 1.

PlaceObject2

The PlaceObject2 tag extends the functionality of the PlaceObject tag. PlaceObject2 can both
add a character to the display list, and modify the attributes of a character that is already on the
display list. The PlaceObject2 tag changed slightly from Flash 4 to Flash 5. In Flash 5 clip actions
were added.

The tag begins with a group of flags that indicate which fields are present in the tag. The optional
fields are CharacterId, Matrix, ColorTransform, Ratio, ClipDepth, Name, and ClipActions. The
Depth field is the only field that is always required.

The depth value determines the stacking order of the character. Characters with lower depth
values are displayed underneath characters with higher depth values. A depth value of 1 means the
character is displayed at the bottom of the stack. There can be only one character at any given
depth. This means a character that is already on the display list can be identified by its depth
alone (that is, a CharacterId is not required).

PlaceObject

Field Type Comment

Header RECORDHEADER Tag type = 4

CharacterId UI16 ID of character to place

Depth UI16 Depth of character

Matrix MATRIX Transform matrix data

ColorTransform (optional) CXFORM Color transform data
34 Chapter 4: The Display List

PlaceFlagMove and PlaceFlagHasCharacter indicate whether a new character is being added to
the display list, or a character already on the display list is being modified. The meaning of the
flags is as follows:

• PlaceFlagMove = 0 and PlaceFlagHasCharacter = 1
A new character (with ID of CharacterId) is placed on the display list at the specified Depth.
Other fields set the attributes of this new character.

• PlaceFlagMove = 1 and PlaceFlagHasCharacter = 0
The character at the specified Depth is modified. Other fields modify the attributes of this
character. Because there can be only one character at any given depth, no CharacterId is
required.

• PlaceFlagMove = 1 and PlaceFlagHasCharacter = 1
The character at the specified Depth is removed, and a new character (with ID of CharacterId)
is placed at that depth. Other fields set the attributes of this new character.

For example, a character that is moved over a series of frames has PlaceFlagHasCharacter set in
the first frame, and PlaceFlagMove set in subsequent frames. The first frame places the new
character at the desired depth, and sets the initial transformation matrix. Subsequent frames
simply replace the transformation matrix of the character at the desired depth.

The optional fields in PlaceObject2 have the following meaning:

• The CharacterId field specifies the character to be added to the display list. It is used only
when a new character is being added. If a character that is already on the display list is being
modified, the CharacterId field is absent.

• The Matrix field specifies the position, scale and rotation of the character being added
or modified.

• The ColorTransform field specifies the color effect applied to the character being added
or modified.

• The Ratio field specifies a morph ratio for the character being added or modified. This field
applies only to characters defined with DefineMorphShape, and controls how far the morph
has progressed. A ratio of zero displays the character at the start of the morph. A ratio of 65535
displays the character at the end of the morph. For values between zero and 65535 Flash Player
interpolates between the start and end shapes, and displays an ‘in-between’ shape.

• The ClipDepth field specifies the top-most depth that will be masked by the character being
added. A ClipDepth of zero indicates this is not a clipping character.

• The Name field specifies a name for the character being added or modified. This field is
typically used with sprite characters, and is used to identify the sprite for SetTarget actions. It
allows the main movie (or other sprites) to perform actions inside the sprite (see Sprites and
Movie Clips).

• The ClipActions field, which is valid only for placing sprite characters, defines one or more
event handlers to be invoked when certain events occur.
Display List Tags 35

The minimum file format version is SWF 3.

PlaceObject2

Field Type Comment

Header RECORDHEADER Tag type = 26

PlaceFlagHasClipActions UB[1] SWF 5 and later: has clip
actions (sprite characters only)
Otherwise: always 0

PlaceFlagHasClipDepth UB[1] Has clip depth

PlaceFlagHasName UB[1] Has name

PlaceFlagHasRatio UB[1] Has ratio

PlaceFlagHasColorTransform UB[1] Has color transform

PlaceFlagHasMatrix UB[1] Has matrix

PlaceFlagHasCharacter UB[1] Places a character

PlaceFlagMove UB[1] Defines a character to be moved

Depth UI16 Depth of character

CharacterId If PlaceFlagHasCharacter
UI16

ID of character to place

Matrix If PlaceFlagHasMatrix
MATRIX

Transform matrix data

ColorTransform If PlaceFlagHasColorTransform
CXFORMWITHALPHA

Color transform data

Ratio If PlaceFlagHasRatio UI16

Name If PlaceFlagHasName STRING Name of character

ClipDepth If PlaceFlagHasClipDepth UI16 Clip depth
(see Clipping Layers)

ClipActions If PlaceFlagHasClipActions
CLIPACTIONS

SWF 5 and later:
Clip Actions Data
36 Chapter 4: The Display List

Clip actions are only valid for placing sprite characters. Clip actions define event handlers for a
sprite character.

ClipEventFlags

The CLIPEVENTFLAGS sequence specifies one or more sprite events to which an event handler
applies. In SWF version 5 and earlier, CLIPEVENTFLAGS is two bytes; in SWF 6 and later, it is
four bytes.

CLIPACTIONS

Field Type Comment

Reserved UI16 Must be 0

AllEventFlags CLIPEVENTFLAGS All events used in these clip
actions

ClipActionRecords CLIPACTIONRECORD
[one or more]

Individual event handlers

ClipActionEndFlag If SWF version <= 5, UI16
If SWF version >= 6, UI32

Must be 0

CLIPACTIONRECORD

Field Type Comment

EventFlags CLIPEVENTFLAGS Event(s) to which this handler
applies

ActionRecordSize UI32 Offset in bytes from end of this
field to next
CLIPACTIONRECORD (or
ClipActionEndFlag)

KeyCode If EventFlags contain
ClipEventKeyPress: UI8
Otherwise absent

Key code to trap (see
BUTTONCONDACTION)

Actions ActionRecord
[one or more]

Actions to perform

CLIPEVENTFLAGS

Field Type Comment

ClipEventKeyUp UB[1] Key up event

ClipEventKeyDown UB[1] Key down event

ClipEventMouseUp UB[1] Mouse up event

ClipEventMouseDown UB[1] Mouse down event

ClipEventMouseMove UB[1] Mouse move event

ClipEventUnload UB[1] Clip unload event

ClipEventEnterFrame UB[1] Frame event
Display List Tags 37

The extra events added in SWF 6 correspond to the Flash button movie clips, which are sprites that
may be scripted in the same way as buttons (see BUTTONCONDACTION). The DragOut
through Press events correspond to the button state transition events in button action conditions;
the correspondence between them is shown in the description of Button Events (see Events, State
Transitions and Actions.

The KeyDown and KeyUp events are not specific to a particular key; handlers for these events
will be executed whenever any key on the keyboard (with the possible exception of certain special
keys) transitions to the down state or up state, respectively. To find out what key made the
transition, actions within a handler should call methods of the ActionScript Key object.

ClipEventLoad UB[1] Clip load event

ClipEventDragOver UB[1] SWF 6 and later: mouse drag over event
Otherwise: always 0

ClipEventRollOut UB[1] SWF 6 and later: mouse rollout event
Otherwise: always 0

ClipEventRollOver UB[1] SWF 6 and later: mouse rollover event
Otherwise: always 0

ClipEventReleaseOutside UB[1] SWF 6 and later: mouse release outside
event
Otherwise: always 0

ClipEventRelease UB[1] SWF 6 and later: mouse release inside
event
Otherwise: always 0

ClipEventPress UB[1] SWF 6 and later: mouse press event
Otherwise: always 0

ClipEventInitialize UB[1] SWF 6 and later: initialize event
Otherwise: always 0

ClipEventData UB[1] Data received event

Reserved If SWF version >= 6
UB[5]

Always 0

ClipEventConstruct If SWF version >= 6
UB[1]

SWF 7 and later: construct event
Otherwise: always 0

ClipEventKeyPress If SWF version >= 6
UB[1]

Key press event

ClipEventDragOut If SWF version >= 6
UB[1]

Mouse drag out event

Reserved If SWF version >= 6
UB[8]

Always 0

CLIPEVENTFLAGS

Field Type Comment
38 Chapter 4: The Display List

The KeyPress event works differently from KeyDown and KeyUp. KeyPress is specific to a
particular key or ASCII character (which is specified in the CLIPACTIONRECORD). This is
identical to the way that KeyPress events work (see BUTTONCONDACTION).

RemoveObject

The RemoveObject tag removes the specified character (at the specified depth) from the display
list.

The minimum file format version is SWF 1.

RemoveObject2

The RemoveObject2 tag removes the character at the specified depth from the display list.

The minimum file format version is SWF 3.

ShowFrame

The ShowFrame tag instructs Flash Player to display the contents of the display list. The movie is
paused for the duration of a single frame.

The minimum file format version is SWF 1.

RemoveObject

Field Type Comment

Header RECORDHEADER Tag type = 5

CharacterId UI16 ID of character to remove

Depth UI16 Depth of character

RemoveObject2

Field Type Comment

Header RECORDHEADER Tag type = 28

Depth UI16 Depth of character

ShowFrame

Field Type Comment

Header RECORDHEADER Tag type = 1
Display List Tags 39

40 Chapter 4: The Display List

CHAPTER 5
Control Tags
Control tags manage some overall aspects of files, frames and playback.

SetBackgroundColor

The SetBackgroundColor tag sets the background color of the display.

The minimum file format version is SWF 1.

FrameLabel

The FrameLabel tag gives the specified Name to the current frame. This name is used by
ActionGoToLabel to identify the frame.

The minimum file format version is SWF 3.

SetBackgroundColor

Field Type Comment

Header RECORDHEADER Tag type = 9

BackgroundColor RGB Color of the movie background

FrameLabel

Field Type Comment

Header RECORDHEADER Tag type = 43

Name STRING Label for frame
41

In SWF files of version 6 or later, an extension to the FrameLabel tag called named anchors is
available. A named anchor is a special kind of frame label that, in addition to labeling a frame for
seeking using ActionGoToLabel, labels the frame for seeking using HTML anchor syntax. The
browser plug-in versions of the Macromedia Flash Player, in version 6 and later, will inspect the
URL in the browser’s Location bar for an anchor specification (a trailing phrase of the form
#anchorname). If an anchor specification is present in the Location bar, Flash Player will begin
playback starting at the frame that contains a FrameLabel tag that specifies a named anchor of the
same name, if one exists; otherwise playback will begin at Frame 1 as usual. In addition, when
Flash Player arrives at a frame that contains a named anchor, it will add an anchor specification
with the given anchor name to the URL in the browser’s Location bar. This ensures that when
users create a bookmark at such a time, they can later return to the same point in the Flash movie,
subject to the granularity at which named anchors are present within the movie.

To create a named anchor, insert one additional non-null byte after the null terminator of the
anchor name. This is valid only for SWF version 6 or later.

Protect

The Protect tag marks a file as not importable for editing in an authoring environment. If the
Protect tag contains no data (tag length = 0), the SWF file cannot be imported. If this tag is
present in the file, any authoring tool should prevent loading of the file for editing.

If the Protect tag does contain data (tag length is not 0), the SWF file can be imported if the
correct password is specified. The data in the tag is a null-terminated string which specifies a
MD5 encrypted password. Specifying a password is only supported in SWF 5 or later.

The MD5 password encryption algorithm used was written by Poul-Henning Kamp and is freely
distributable. It resides in the FreeBSD tree at src/lib/libcrypt/crypt-md5.c. The MD5 password
encryption algorithm is also used by the EnableDebugger tag.

The minimum file format version is SWF 2.

NamedAnchor

Field Type Comment

Header RECORDHEADER Tag type = 43

Name Null-terminated STRING. (0 is NULL) Label for frame.

Named Anchor flag UI8 Always 1

Protect

Field Type Comment

Header RECORDHEADER Tag type = 24
42 Chapter 5: Control Tags

End

The End tag marks the end of a file. This must always be the last tag in a file. The End tag is also
required to end a sprite definition.

The minimum file format version is SWF 1.

ExportAssets

ExportAssets makes portions of a SWF file available for import by other SWF files (see
ImportAssets). For example, ten Flash movies that are all part of the same website can share an
embedded custom font if one movie embeds the font and exports the font character. Each
exported character is identified by a string. Any type of character can be exported.

The minimum file format version is SWF 5.

End

Field Type Comment

Header RECORDHEADER Tag type = 0

Export Assets

Field Type Comment

Header RECORDHEADER Tag type = 56

Count UI16 Number of assets to export

Tag1 UI16 First character ID to export

Name1 STRING Identifier for first exported
character

...

TagN UI16 Last character ID to export

NameN STRING Identifier for last exported
character
ExportAssets 43

ImportAssets

The ImportAssets tag imports characters from another SWF file. The importing SWF file
references the exporting SWF file by the URL where it can be found. Imported assets are added to
the dictionary just like characters defined within a SWF file.

The URL of the exporting SWF file can be absolute or relative. If it is relative, it will be resolved
relative to the location of the importing SWF file.

The minimum file format version is SWF 5.

EnableDebugger

The EnableDebugger tag enables debugging. The password in the EnableDebugger tag is
encrypted using the MD5 algorithm, in the same way as the Protect tag.

The EnableDebugger tag has been deprecated in SWF 6; Flash Player 6 or later will ignore this
tag. This is because the format of the debugging information required in the ActionScript
debugger was changed with version 6. In SWF 6 or later, use the EnableDebugger2 tag instead.

The minimum file format version is SWF 5; the maximum file format version is also SWF 5.

ImportAssets

Field Type Comment

Header RECORDHEADER Tag type = 57

URL STRING URL where the source SWF file
can be found

Count UI16 Number of assets to import

Tag1 UI16 Character ID to use for first
imported character in importing
SWF file (need not match
character ID in exporting
SWF file)

Name1 STRING Identifier for first imported
character (must match an
identifier in exporting SWF file)

...

TagN UI16 Character ID to use for last
imported character in importing
SWF file

NameN STRING Identifier for last imported
character

EnableDebugger

Field Type Comment

Header RECORDHEADER Tag type = 58

Password Null-terminated STRING. (0 is NULL) MD5-encrypted password
44 Chapter 5: Control Tags

EnableDebugger2

The EnableDebugger2 tag enables debugging. Note that the password in the EnableDebugger2
tag is encrypted using the MD5 algorithm, in the same way as the Protect tag.

The minimum file format version is SWF 6.

ScriptLimits

The ScriptLimits tag includes two fields which can be used to override the default settings for
maximum recursion depth and ActionScript time-out: MaxRecursionDepth and
ScriptTimeoutSeconds.

The MaxRecursionDepth field sets the ActionScript maximum recursion limit. The default
setting is 256 at the time of this writing. This default can be changed to any value greater than 0.

The ScriptTimeoutSeconds field sets the maximum number of seconds the player should process
ActionScript before displaying a dialog box asking if the script should be stopped.

The default value for ScriptTimeoutSeconds varies by platform and is between 15 to 20 seconds.
This default value is subject to change.

The minimum file format version is SWF 7.

SetTabIndex

Flash Player maintains a concept of tab order of the interactive and textual objects displayed. Tab
order is used both for actual tabbing and, in SWF version 6 and later, for determining the order
in which objects are exposed to accessibility aids (such as screen readers). The SWF version 7
SetTabIndex tag sets the index of an object within the tab order.

If there is no character currently placed at the specified depth, then this tag is simply ignored.

EnableDebugger2

Field Type Comment

Header RECORDHEADER Tag type = 64

Reserved UI16 Always 0

Password Null-terminated STRING. (0 is NULL) MD5-encrypted password

ScriptLimits

Field Type Comment

Header RECORDHEADER Tag type = 65

MaxRecursionDepth UI16 Maximum recursion depth

ScriptTimeoutSeconds UI16 Maximum ActionScript
processing time before script
stuck dialog box displays
SetTabIndex 45

Tab ordering can also be established using the ActionScript .tabIndex property, but this does not
provide a way to set a tab index for a static text object, because the player does not provide a
scripting reflection of static text objects. Fortunately, this is not a problem for the purpose of
tabbing, because static text objects are never actually tab stops. However, this is a problem for the
purpose of accessibility ordering, because static text objects are exposed to accessibility aids. When
generating SWF content that is intended to be accessible and contains static text objects, the
SetTabIndex tag is more useful than the .tabIndex property.

The minimum file format version is SWF 7.

SetTabIndex

Field Type Comment

Header RECORDHEADER Tag type = 66

Depth UI16 Depth of character

TabIndex UI16 Tab order value
46 Chapter 5: Control Tags

CHAPTER 6
Actions
Actions are an essential part of an interactive Macromedia Flash (SWF) movie. Actions allow a
movie to react to events such as mouse movements or mouse clicks. The SWF 3 Action Model
and earlier supports a simple action model. The SWF 4 Action Model supports a greatly
enhanced action model including an expression evaluator, variables, and conditional branching
and looping. The SWF 5 Action Model adds a JavaScript-style object model, data types
and functions.

SWF 3 Action Model

The SWF version 3 action model consists of eleven simple instructions for Flash Player:

An action (or list of actions) can be triggered by a button state transition, or by a SWF 3 Actions.
The action is not executed immediately, but is added to a list of actions to be processed. The list is
executed on a ShowFrame tag, or after the button state has changed. An action can cause other
actions to be triggered, in which case, the action is added to the list of actions to be processed.
Actions are processed until the action list is empty.

Instruction See Description

Play ActionPlay start playing at the current frame

Stop ActionStop stop playing at the current frame.

NextFrame ActionNextFrame go to the next frame

PreviousFrame ActionPreviousFrame go to the previous frame

GotoFrame ActionGotoFrame go to the specified frame

GotoLabel ActionGoToLabel go to the frame with the specified label

WaitForFrame ActionWaitForFrame wait for the specified frame

GetURL ActionGetURL get the specified URL

StopSounds ActionStopSounds stop all sounds playing

ToggleQuality ActionToggleQuality toggle the display between high and low quality.

SetTarget ActionSetTarget change the context of subsequent actions to a
named object
47

By default, Timeline actions such as Stop (see ActionStop), Play (see ActionPlay) and GoToFrame
(see ActionGotoFrame) apply to movies that contain them. However, the SetTarget action (see
ActionSetTarget), which is called ‘Tell Target’ in the Macromedia Flash user interface, can be used
to send an action command to another movie or sprite (see DefineSprite).

There are 127 possible actions of which 91 are currently defined.

SWF 3 Actions

The following actions are available in SWF 3:

DoAction Tag

Instructs Flash Player to perform a list of actions when the current frame is complete. The actions
are performed when the ShowFrame tag is encountered, regardless of where in the frame the
DoAction tag appears.

ActionRecord

An action record consists of a 1-byte action code. If the high bit of the action code is set, then
there is a 16-bit length that describes the amount of data used by the action. If the high bit is
clear, the action has no data.

ActionGotoFrame

Instructs Flash Player to go to the specified frame in the current movie.

Field Type Comment

Header RECORDHEADER Tag type = 12

Actions ACTIONRECORD [zero or more] List of actions to perform - see below

ActionEndFlag UI8 = 0 Always set to 0

Field Type Comment

ActionCode code = UI8 An action code as specified below

Length If code >= 0x80 UI16 The number of bytes (after this) in the
ACTIONRECORD.

Field Type Comment

ActionGotoFrame UI8 Action = 0x81

Length UI16 Always 2

Frame WORD Frame index
48 Chapter 6: Actions

ActionGetURL

Instructs Flash Player to get the URL specified by UrlString. The URL can be of any type,
including an HTML file, an image or another SWF movie. If the movie is playing in a browser,
the URL will be displayed in the frame specified by TargetString. The special target names
“_level0” and “_level1” are used to load another SWF movie into levels 0 and 1 respectively.

ActionNextFrame

Instructs Flash Player to go to the next frame in the current movie.

ActionPreviousFrame

Instructs Flash Player to go to the previous frame of the current movie.

ActionPlay

Instructs Flash Player to start playing at the current frame.

ActionStop

Instructs Flash Player to stop playing the movie at the current frame.

ActionToggleQuality

Toggles the display between high and low quality.

Field Type Comment

ActionGetURL UI8 Action = 0x83

Length UI16 Combined length of strings

UrlString STRING Target URL string

TargetString STRING Target string

Field Type Comment

ActionNextFrame UI8 Action = 0x04

Field Type Comment

ActionPrevFrame UI8 Action = 0x05

Field Type Comment

ActionPlay UI8 Action = 0x06

Field Type Comment

ActionStop UI8 Action = 0x07

Field Type Comment

ActionToggleQualty UI8 Action = 0x08
SWF 3 Action Model 49

ActionStopSounds

Instructs Flash Player to stop playing all sounds.

ActionWaitForFrame

Instructs Flash Player to wait until the specified frame; otherwise skips the specified number of
actions.

ActionSetTarget

Instructs Flash Player to change the context of subsequent actions, so they apply to a named
object (TargetName) rather than the current movie.

For example, the SetTarget action can be used to control the Timeline of a sprite object. The
following sequence of actions sends a sprite called “spinner” to the first frame in its Timeline:

1 SetTarget “spinner”

2 GotoFrame zero

3 SetTarget “” (empty string)

4 End of actions. (Action code = 0)
All actions following SetTarget “spinner” apply to the spinner object until SetTarget “”,
which sets the action context back to the current movie. For a complete discussion of target
names see DefineSprite.

Field Type Comment

ActionStopSounds UI8 Action = 0x09

Field Type Comment

ActionWaitForFrame UI8 Action = 0x8A

Length UI16 Always 3

Frame WORD Frame to wait for

SkipCount BYTE Number of actions to skip if
frame is not loaded

Field Type Comment

ActionSetTarget UI8 Action = 0x8B

Length UI16 Length of record

TargetName STRING Target of action target
50 Chapter 6: Actions

ActionGoToLabel

Instructs Flash Player to go to frame associated with the specified label. A label can be attached to
a frame with the FrameLabel tag.

SWF 4 Action Model

SWF version 4 supports a greatly enhanced action model including an expression evaluator,
variables, conditional branching and looping.

The Macromedia Flash Player 4 incorporates a stack machine that interprets and executes SWF 4
actions. The key SWF 4 action is ActionPush. This action is used to push parameters on to the
stack. Unlike SWF 3 actions, SWF 4 actions do not have parameters embedded in the tag, rather
they push parameters onto the stack, and pop results off the stack.

The expression evaluator is also stack based. Arithmetic operators include ActionAdd,
ActionSubtract, ActionMultiply and ActionDivide. The Flash authoring tool converts expressions
to a series of stack operations. For example, the expression 1+x*3 is represented as the following
action sequence:
ActionPush “x”
ActionGetVariable
ActionPush “3”
ActionMultiply
ActionPush “1”
ActionAdd

The result of this expression is on the stack. Note that all values on the stack, including numeric
values, are stored as strings. In the example above, the numeric values 3 and 1, are pushed on the
stack as the strings “3” and “1”.

The Program Counter

The current point of execution of Flash Player is called the Program Counter or ‘PC’. The value
of the PC is defined as the address of the action following the action currently being executed.
Control Flow actions such as ActionJump, change the value of the PC. These actions are similar
to ‘branch’ instructions in assembler, or ‘go to’ instructions in other languages. For example,
ActionJump tells Flash Player to ‘jump’ to a new position in the action sequence. The new PC is
specified as an offset from the current PC. There can be both positive and negative offsets, so
Flash Player can jump forward and backward in the action sequence.

Field Type Comment

ActionGoToLabel UI8 Action = 0x8C

Length UI16 Length of record

Label STRING Frame label
SWF 4 Action Model 51

SWF 4 Actions

The following actions are available in SWF 4:

Arithmetic Operators

ActionAdd
ActionDivide
ActionMultiply
ActionSubtract

Numerical Comparison

ActionEquals
ActionLess

Logical Operators

ActionAnd
ActionNot
ActionOr

String Manipulation

ActionStringAdd
ActionStringEquals
ActionStringExtract
ActionStringLength
ActionMBStringExtract
ActionMBStringLength
ActionStringLess

Stack Operations

ActionPop
ActionPush

Type Conversion

ActionAsciiToChar
ActionCharToAscii
ActionToInteger
ActionMBAsciiToChar
ActionMBCharToAscii

Control Flow

ActionCall
ActionIf
ActionJump

Variables

ActionGetVariable
ActionSetVariable
52 Chapter 6: Actions

Movie Control

ActionGetURL2
ActionGetProperty
ActionGotoFrame2
ActionRemoveSprite
ActionSetProperty
ActionSetTarget2
ActionStartDrag
ActionWaitForFrame2
ActionCloneSprite
ActionEndDrag

Utilities

ActionGetTime
ActionRandomNumber
ActionTrace
SWF 4 Action Model 53

Stack Operations

The following are stack operations.

ActionPush

Pushes a value to the stack.

ActionPush pushes a value on to the stack. The Type field specifies the type of the value to
be pushed.

If Type = 1, the value to be pushed is specified as a 32-bit IEEE single-precision little-endian
floating-point value. PropertyIds are pushed as FLOATs. PropertyIds are used by
ActionGetProperty and ActionSetProperty to access the properties of named objects.

If Type = 4, the value to be pushed is a register number. Flash Player supports up to 4 registers.
With the use of ActionDefineFunction2, up to 256 registers can be used.

Field Type Comment

ActionPush UI8 Action = 0x96

Type UI8 0 = string literal
1 = floating-point literal
The following types are available in Flash 5+:
2 = null
3 = undefined
4 = register
5 = boolean
6 = double
7 = integer
8 = constant 8
9 = constant 16

String If Type = 0, STRING Null terminated character string

Float If Type = 1, UI32 32-bit IEEE single-precision little-endian fp value

RegisterNumber If Type = 4, UI8 register number

Boolean If Type = 5, UI8 boolean value

Double If Type = 6, UI64 64-bit IEEE double-precision little-endian double value

Integer If Type = 7, UI32 32-bit little-endian integer

Constant8 If Type = 8, UI8 constant pool index (for indices < 256) (see
ActionConstantPool)

Constant16 If Type = 9, UI16 constant pool index (for indices >= 256) (see
ActionConstantPool)
54 Chapter 6: Actions

ActionPop

Pops a value from the stack and discards it.

ActionPop pops a value off the stack and discards the value.

Arithmetic Operators

ActionAdd

Adds two numbers and pushes the result back to the stack.

ActionAdd does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 Adds the numbers A and B.
5 Pushes the result, A+B, to the stack.

ActionSubtract

 Subtracts two numbers and pushes the result back to the stack.

ActionSubtract does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 Subtracts A from B.
5 Pushes the result, B-A, to the stack.

ActionMultiply

Multiplies two numbers and pushes the result back to the stack.

Field Type Comment

ActionPop UI8 Action = 0x17

Field Type Comment

ActionAdd UI8 Action = 0x0A

Field Type Comment

ActionSubtract UI8 Action = 0x0B

Field Type Comment

ActionMultiply UI8 Action = 0x0C
SWF 4 Action Model 55

ActionMultiply does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 Multiplies A times B.
5 Pushes the result, A*B, to the stack.

ActionDivide

Divides two numbers and pushes the result back to the stack.

ActionDivide does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 Divides B by A.
5 Pushes the result, B/A, to the stack.
6 If A is zero, the result is the string #ERROR#.
Note: When playing a Flash 5 SWF file, NaN, Infinity or –Infinity is pushed to the stack instead of
#ERROR#.

Numerical Comparison

ActionEquals

Tests two numbers for equality.

ActionEquals does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 Compares the numbers for equality.
5 If the numbers are equal, a 1 (TRUE) is pushed to the stack.
6 Otherwise, a 0 is pushed to the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

Field Type Comment

ActionDivide UI8 Action = 0x0D

Field Type Comment

ActionEquals UI8 Action = 0x0E
56 Chapter 6: Actions

ActionLess

Tests if a number is less than another number

ActionLess does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 If B < A, a 1 is pushed to the stack; otherwise, a 0 is pushed to the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

Logical Operators

ActionAnd

Performs a logical AND of two numbers.

ActionAdd does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 If both numbers are nonzero, a 1 is pushed to the stack; otherwise, a 0 is pushed to the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

ActionOr

Performs a logical OR of two numbers.

ActionOr does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Converts A and B to floating-point; non-numeric values evaluate to 0.
4 If either numbers is nonzero, a 1 is pushed to the stack; otherwise, a 0 is pushed to the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

Field Type Comment

ActionLess UI8 Action = 0x0F

Field Type Comment

ActionAnd UI8 Action = 0x10

Field Type Comment

ActionOr UI8 Action = 0x11
SWF 4 Action Model 57

ActionNot

Performs a logical NOT of a number.
Note: In Flash 5 SWF files, the ActionNot action converts its argument to a Boolean, and pushes a
result of type Boolean. In Flash 4 SWF files, the argument and result are numbers.

ActionNot does the following:

1 Pops a value off the stack.
2 Converts the value to floating-point; non-numeric values evaluate to 0.
3 If the value is zero, a 1 is pushed on the stack.
4 If the value is nonzero, a 0 is pushed on the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

String Manipulation

ActionStringEquals

Tests two strings for equality.

ActionStringEquals does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Compares A and B as strings. The comparison is case-sensitive.
4 If the strings are equal, a 1 (TRUE) is pushed to the stack.
5 Otherwise, a 0 is pushed to the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

ActionStringLength

Computes the length of a string.

Field Type Comment

ActionNot UI8 Action = 0x12

Result Boolean

Field Type Comment

ActionStringEquals UI8 Action = 0x13

Field Type Comment

ActionStringLength UI8 Action = 0x14
58 Chapter 6: Actions

ActionStringLength does the following:

1 Pops a string off the stack.
2 Calculates the length of the string and pushes it to the stack.

ActionStringAdd

Concatenates two strings.

ActionStringAdd does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 Pushes the concatenation BA to the stack.

ActionStringExtract

Extracts a substring from a string.

ActionStringExtract does the following:

1 Pops number count off the stack.
2 Pops number index off the stack.
3 Pops string string off the stack.
4 Pushes the substring of string starting at the index’th character and count characters in length

to the stack.
5 If either index or count do not evaluate to integers, the result is the empty string.

ActionStringLess

Tests to see if a string is less than another string

ActionStringLess does the following:

1 Pops value A off the stack.
2 Pops value B off the stack.
3 If B < A using a byte-by-byte comparison, a 1 is pushed to the stack; otherwise, a 0 is pushed to

the stack.
Note: When playing a Flash 5 SWF file, true is pushed to the stack instead of 1, and false is
pushed to the stack instead of 0.

Field Type Comment

ActionStringAdd UI8 Action = 0x21

Field Type Comment

ActionStringExtract UI8 Action = 0x15

Field Type Comment

ActionStringLess UI8 Action = 0x29
SWF 4 Action Model 59

ActionMBStringLength

Computes the length of a string, multi-byte aware.

It does the following:

1 Pops a string off the stack.
2 Calculates the length of the string in characters and pushes it to the stack.
Note: This is a multi-byte aware version of ActionStringLength. On systems with double-byte
support, a double-byte character is counted as a single character.

ActionMBStringExtract

Extracts a substring from a string, multi-byte aware.

It does the following:

1 Pops number count off the stack.
2 Pops number index off the stack.
3 Pops string string off the stack.
4 Pushes the substring of string starting at the index’th character and count characters in length

to the stack.
Note: If either index or count do not evaluate to integers, the result is the empty string.

This is a multi-byte aware version of ActionStringExtract. index and count are treated as character
indices, counting double-byte characters as single characters.

Type Conversion

ActionToInteger

Converts a value to an integer.

It does the following:

1 Pops a value off the stack.
2 Converts the value to a number.
3 Discards any digits after the decimal point, resulting in an integer.
4 Pushes the resulting integer to the stack.

Field Type Comment

ActionMBStringLength UI8 Action = 0x31

Field Type Comment

ActionMBStringExtract UI8 Action = 0x35

Field Type Comment

ActionToInteger UI8 Action = 0x18
60 Chapter 6: Actions

ActionCharToAscii

Converts character code to ASCII.

It does the following:

1 Pops a value off the stack.
2 Converts the first character of the value to a numeric ASCII character code.
3 Pushes the resulting character code to the stack.

ActionAsciiToChar

Converts a value to an ASCII character code.

It does the following:

1 Pops a value off the stack.
2 Converts the value from a number to the corresponding ASCII character.
3 Pushes the resulting character to the stack.

ActionMBCharToAscii

Converts character code to ASCII, multi-byte aware.

It does the following:

1 Pops a value off the stack.
2 Converts the first character of the value to a numeric character code. If the first character of the

value is a double-byte character, a 16-bit value is constructed with the first byte as the high order
byte and the second byte as the low order byte.

3 Pushes the resulting character code to the stack.

ActionMBAsciiToChar

Converts ASCII to character code, multi-byte aware.

Field Type Comment

ActionCharToAscii UI8 Action = 0x32

Field Type Comment

ActionAsciiToChar UI8 Action = 0x33

Field Type Comment

ActionMBCharToAscii UI8 Action = 0x36

Field Type Comment

ActionMBAsciiToChar UI8 Action = 0x37
SWF 4 Action Model 61

It does the following:

1 Pops a value off the stack.
2 Converts the value is from a number to the corresponding character. If the character is a 16-bit

value (>= 256), a double-byte character is constructed with the first byte containing the high-
order byte, and the second byte containing the low-order byte.

3 Pushes the resulting character to the stack.

Control Flow

ActionJump

Creates an unconditional branch.

It adds BranchOffset bytes to the instruction pointer in the execution stream.

The offset is a signed quantity, enabling branches from –32,768 bytes to 32,767 bytes. An offset
of 0 points to the action directly after the ActionJump action.

ActionIf

Creates a conditional test and branch.

It does the following:

1 Pops Condition, a number, off the stack.
2 Tests if Condition is nonzero: If Condition is nonzero, BranchOffset bytes are added to the

instruction pointer in the execution stream.
Note: When playing a Flash 5 SWF file, Condition is converted to a Boolean and compared to
true, not 0.

The offset is a signed quantity, enabling branches from –32768 bytes to 32767 bytes. An offset of
0 points to the action directly after the ActionIf action.

ActionCall

Calls a subroutine.

Field Type Comment

ActionJump UI8 Action = 0x99

BranchOffset WORD

Field Type Comment

ActionIf UI8 Action = 0x9D

BranchOffset WORD

Field Type Comment

ActionCall UI8 Action = 0x9E
62 Chapter 6: Actions

It does the following:

1 Pops a value off the stack.
This value should be either a string matching a frame label, or a number indicating a frame
number. The value may be prefixed by a target string identifying the movie clip that contains
the frame being called.

2 If the frame is successfully located, the actions in the target frame are executed. After the actions
in the target frame are executed, execution resumes at the instruction after the ActionCall
instruction.

3 If the frame cannot be found, nothing happens.
Note: This action's tag (0x9E) has the high bit set, which will waste a few bytes in the SWF file size.
This is a bug.

Variables

ActionGetVariable

Gets a variable’s value.

It does the following:

1 Pops name off the stack, a string which names is the variable to get.
2 Pushes the value of the variable to the stack.
A variable in another execution context may be referenced by prefixing the variable name with the
target path and a colon. For example: /A/B:FOO references variable FOO in movie clip with target
path /A/B.

ActionSetVariable

Sets a variable.

It does the following:

1 Pops value off the stack.
2 Pops name off the stack, a string which names the variable to set.
3 Sets the variable name in the current execution context to value.
A variable in another execution context may be referenced by prefixing the variable name with the
target path and a colon. For example: /A/B:FOO references variable FOO in movie clip with target
path /A/B.

Field Type Comment

ActionGetVariable UI8 Action = 0x1C

Field Type Comment

ActionSetVariable UI8 Action = 0x1D
SWF 4 Action Model 63

Movie Control

ActionGetURL2

Gets a URL, stack-based

It does the following:

1 Pops target off the stack.
■ A LoadTargetFlag value of 0 indicates that the target is a window. Target may be an empty

string to indicate the current window.
■ A LoadTargetFlag value of 0 indicates that the target is a path to a sprite. The target path

may be in slash or dot syntax.
2 Pops URL off the stack; URL specifies the URL to be retrieved.
3 SendVarsMethod specifies the method to use for the HTTP request.

■ A SendVarsMethod value of 0 indicates that this is not a form request, so the movie clip’s
variables should not be encoded and submitted.

■ A SendVarsMethod value of 1 specifies a HTTP GET request.
■ A SendVarsMethod value of 2 specifies a HTTP POST request.

4 If the SendVarsMethod value is 1 (GET) or 2 (POST), the variables in the current movie clip
are submitted to the URL using the standard x-www-form-urlencoded encoding and the HTTP
request method specified by method.

If the LoadVariablesFlag is set, the server is expected to respond with a MIME type of
application/x-www-form-urlencoded and a body in the format
var1=value1&var2=value2&...&varx=valuex. This response is used to populate ActionScript
variables rather than display a document. The variables populated may be in a timeline (if
LoadTargetFlag is 0) or in the specified sprite (if LoadTargetFlag is 1).

If the LoadTargetFlag is specified without the LoadVariablesFlag, the server is expected to
respond with a MIME type of application/x-shockwave-flash and a body consisting of a SWF
file. This response is used to load a sub-movie into the specified sprite rather than to display an
HTML document.

Field Type Comment

ActionGetURL2 UI8 Action = 0x9A

SendVarsMethod UB[2] 0 = None
1 = GET
2 = POST

Reserved UB[4] Always 0

LoadTargetFlag UB[1] 0 - Target is a browser window
1 - Target is a path to a sprite

LoadVariablesFlag UB[1] 0 - No variables to load
1 - Load variables
64 Chapter 6: Actions

ActionGotoFrame2

Goes to frame, stack-based.

It does the following:

1 Pops frame off the stack.
■ If frame is a number, the next frame of the movie to be displayed will be the frame’th frame

in the current movie clip.
■ If frame is a string, frame is treated as a frame label. If the specified label exists in the

current movie clip, the labeled frame will become the current frame. Otherwise, the action
is ignored.

2 Either a frame or a number may be prefixed by a target path, for example, /MovieClip:3 or
/MovieClip:FrameLabel.

3 If the Play flag is set, the action goes to the specified frame and begins playing the enclosing
movie clip. Otherwise, the action goes to the specified frame and stops.

ActionSetTarget2

Sets the current context, stack-based.

It pops target off the stack and makes it the current active context.

This action behaves exactly like the original ActionSetTarget from SWF 3, but is stack-based to
enable the target path to be the result of expression evaluation.

ActionGetProperty

Gets a movie property.

Field Type Comment

ActionGotoFrame2 UI8 Action = 0x9F

Reserved UB[6] Always 0

SceneBiasFlag UB[1] Scene bias flag

Play flag UB[1] 0 - Go to frame and stop
1 - Go to frame and play

SceneBias If SceneBiasFlag = 1, UI16 Number to be added to frame
determined by stack argument

Field Type Comment

ActionSetTarget2 UI8 Action = 0x20

Field Type Comment

ActionGetProperty UI8 Action = 0x22
SWF 4 Action Model 65

It does the following:

1 Pops index off the stack.
2 Pops target off the stack.
3 Retrieves the value of the property enumerated as index from the movie clip with target path

target and pushes the value to the stack.
The following table lists property index values:

*_quality, _xmouse and _ymouse are only available in Flash 5 SWF files.

Property Value

_X 0

_Y 1

_xscale 2

_yscale 3

_currentframe 4

_totalframes 5

_alpha 6

_visible 7

_width 8

_height 9

_rotation 10

_target 11

_framesloaded 12

_name 13

_droptarget 14

_url 15

_highquality 16

_focusrect 17

_soundbuftime 18

_quality* 19

_xmouse* 20

_ymouse* 21
66 Chapter 6: Actions

ActionSetProperty

Sets a movie property.

It does the following:

1 Pops value off the stack.
2 Pops index off the stack.
3 Pops target off the stack.
4 Sets the property enumerated as index in the movie clip with target path target to the value

value.

ActionCloneSprite

Clones a sprite.

It does the following:

1 Pops depth off the stack.
2 Pops target off the stack.
3 Pops source off the stack.
4 Duplicates movie clip source, giving the new instance the name target, at z-order depth depth.

ActionRemoveSprite

Removes a clone sprite.

It does the following:

1 Pops target off the stack.
2 Removes the clone movie clip identified by target path target.

Field Type Comment

ActionSetProperty UI8 Action = 0x23

Field Type Comment

ActionCloneSprite UI8 Action = 0x24

Field Type Comment

ActionRemoveSprite UI8 Action = 0x25
SWF 4 Action Model 67

ActionStartDrag

Starts dragging a movie clip.

It does the following:

1 Pops target off the stack; target identifies the movie clip to be dragged.
2 Pops lockcenter off the stack. If lockcenter evaluates to a nonzero value, the center of the

dragged movie clip is locked to the mouse position. Otherwise, the movie clip moves relative to
the mouse position when the drag started.

3 Pops constrain off the stack.
4 If constrain evaluates to a nonzero value:

■ Pops y2 off the stack.
■ Pops x2 off the stack.
■ Pops y1 off the stack.
■ Pops x1 off the stack.

ActionEndDrag

Ends the drag operation in progress, if any.

ActionWaitForFrame2

Waits for a frame to be loaded, stack-based.

It does the following:

1 Pops frame off the stack.
2 If the frame identified by frame has been loaded, SkipCount actions following the current one

are skipped.
3 The frame is evaluated in the same way as ActionGotoFrame2.

Field Type Comment

ActionStartDrag UI8 Action = 0x27

Field Type Comment

ActionEndDrag UI8 Action = 0x28

Field Type Comment

ActionWaitForFrame2 UI8 Action = 0x8D

SkipCount BYTE
68 Chapter 6: Actions

Utilities

ActionTrace

Sends a debugging output string.

It does the following:

1 Pops value off the stack.
2 In the Test Movie mode of the Macromedia Flash editor, it appends value to the output window

if the debugging level is not set to None.
In the Macromedia Flash Player, nothing happens.

ActionGetTime

Reports the milliseconds since the Macromedia Flash Player started.

It does the following:

1 Calculates the number of milliseconds since Flash Player was started as an integer.
2 Pushes the number to the stack.

ActionRandomNumber

Calculates a random number.

It does the following:

1 Pops maximum off the stack.
2 Calculates a random number as an integer in the range 0 ... (maximum-1).
3 Pushes the random number to the stack.

SWF 5 Action Model

SWF version 5 is similar to version 4. New actions greatly expand ActionScript functionality.
There are also new type conversion, math and stack operator actions.

Field Type Comment

ActionTrace UI8 Action = 0x26

Field Type Comment

ActionGetTime UI8 Action = 0x34

Field Type Comment

ActionGetTime UI8 Action = 0x30
SWF 5 Action Model 69

SWF 5 Actions

Following is an overview of SWF 5 actions:

ScriptObject Actions

ActionCallFunction
ActionCallMethod
ActionConstantPool
ActionDefineFunction
ActionDefineLocal
ActionDefineLocal2
ActionDelete
ActionDelete2
ActionEnumerate
ActionEquals2
ActionGetMember
ActionInitArray
ActionInitObject
ActionNewMethod
ActionNewObject
ActionSetMember
ActionTargetPath
ActionWith

Type Actions

ActionToNumber
ActionToString
ActionTypeOf

Math Actions

ActionAdd2
ActionLess2
ActionModulo

Stack Operator Actions

ActionBitAnd
ActionBitLShift
ActionBitOr
ActionBitRShift
ActionBitURShift
ActionBitXor
ActionDecrement
ActionIncrement
ActionPush (Enhancements)
ActionPushDuplicate
ActionReturn
ActionStackSwap
ActionStoreRegister
70 Chapter 6: Actions

ScriptObject Actions

ActionCallFunction

Executes a function. The function may be an ActionScript built-in function (such as parseInt), a
user-defined ActionScript function, or a native function. For more information, See
ActionNewObject.

It does the following:

1 Pops the function name (String) from the stack.
2 Pops numArgs (int) from the stack.
3 Pops the arguments off the stack.
4 Invokes the function, passing it the arguments.
5 Pushes the return value of the function invocation to the stack.

If there is no appropriate return value (i.e: the function does not have a “return” statement), a
“push undefined” is generated by the compiler and is pushed to the stack. The “undefined”
return value should be popped off the stack.

For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

ActionCallMethod

Pushes a method (function) call on to the stack. (Similar to ActionNewMethod.)

If the named method exists, ActionCallMethod does the following:

1 Pops the name of the method from the stack.
If the method name is blank or undefined, the object is taken to be a function object that
should be invoked, rather than the container object of a method. For example, if CallMethod
is invoked with object obj and method name blank, it's equivalent to using the syntax:
obj();

If a method’s name is foo, it's equivalent to:
obj.foo();

2 Pops the ScriptObject, object, from the stack.
3 Pops the number of arguments, args, from the stack.
4 Pops the arguments off the stack.

Field Type Comment

ActionCallFunction UI8 Action = 0x3D

Field Type Comment

ActionCallMethod UI8 Action = 0x52
SWF 5 Action Model 71

5 Executes the method call with the specified arguments.
6 Pushes the return value of the method or function to the stack.

If there is no appropriate return value (the function does not have a “return” statement), a
“push undefined” is generated by the compiler and is pushed to the stack. The “undefined”
return value should be popped off the stack.

For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

ActionConstantPool

Creates a new constant pool in the ActionContext. It replaces the old constant pool if it already
exists in the ActionContext.

ActionDefineFunction

Note: ActionDefineFunction is rarely used as of SWF 7 and later; it has been superseded by
ActionDefineFunction2.

Defines a function with a given name and body size.

It parses (in order) functionName, numParams, [param1, param2, … , param N] and then
code size.

Field Type Comment

ActionConstantPool UI8 Action = 0x88

Count UI16 Number of constants to follow

ConstantPool STRING[Count] String constants

Field Type Comment

ActionDefineFunction UI8 Action = 0x9B

FunctionName STRING name of function, empty if
anonymous

NumParams WORD # of parameters

param 1 STRING parameter name 1

param 2 STRING parameter name 2

...

param N STRING parameter name N

codeSize WORD # of bytes of code that follow
72 Chapter 6: Actions

It does the following:

1 Parses the name of the function (name) from the action tag.
2 Skips the parameters in the tag.
3 Parses the code size from the tag. After the DefineFunction tag, the next codeSize bytes of

action data are considered to be the body of the function.
4 Gets the code for the function.
ActionDefineFunction may be used in the following ways:

Usage 1 Pushes an “anonymous” function on stack that will not persist. This function is a
function literal that is declared in an expression instead of a statement. An “anonymous” function
may be used to define a function, return its value, and assign it to a variable in one expression, as
in the following ActionScript:
“area = (function () {return Math.PI * radius *radius;})(5);”

Usage 2 Sets a thread variable that will persist within a named thread, with a given
functionName, and a given function definition. This is the more conventional function
definition. For example in ActionScript:
function Circle(radius) {

this.radius = radius;
this.area = Math.PI * radius * radius;

}

ActionDefineLocal

Defines a local variable and sets its value. If the variable already exists, the value is set to the newly
specified value.

It does the following:

1 Pops value off the stack.
2 Pops name off the stack.

ActionDefineLocal2

Defines a local variable without setting its value. If the variable already exists, nothing happens.
The initial value of the local variable is the undefined value.

It pops name off the stack.

Field Type Comment

ActionDefineLocal UI8 Action = 0x3C

Field Type Comment

ActionDefineLocal2 UI8 Action = 0x41
SWF 5 Action Model 73

ActionDelete

Deletes a named property from a ScriptObject.

It does the following:

1 Pops the name of the property to delete off the stack.
2 Pops the object to delete the property from.

ActionDelete2

Deletes the variables of a thread or Flash Player.

It pops the Name of the thread or Flash Player off the stack.

ActionEnumerate

Obtains the names of all “slots” in use in an ActionScript object—that is, for an object obj, all
names X that could be retrieved with the syntax obj.X. It is used to implement the ActionScript
for / in loop.
Note: Certain special slot names are omitted; for a list of these, search for the term DontEnum in the
ECMA-262 standard.

It does the following:

1 Pops the name of the object variable (which may include slash-path or dot-path syntax) off of
the stack.

2 Pushes a null value onto the stack to indicate the end of the slot names.
3 Pushes each slot name (a string) onto the stack.
Note: The order in which slot names are pushed is undefined.

ActionEquals2

Similar to ActionEquals, but ActionEquals2 knows about types. The equality comparison
algorithm from ECMA-262 Section 11.9.3 is applied.

Field Type Comment

ActionDelete UI8 Action = 0x3A

Field Type Comment

ActionDelete2 UI8 Action = 0x3B

Field Type Comment

ActionEnumerate UI8 Action = 0x46

Field Type Comment

ActionEquals2 UI8 Action = 0x49
74 Chapter 6: Actions

It does the following:

1 Pops arg1 off the stack.
2 Pops arg2 off the stack.
3 Pushes the return value to the stack.

ActionGetMember

Retrieves a named property from an object, and pushes the value of the property onto the stack.

It does the following:

1 Pops the name of the member function.
2 Pops the ScriptObject object off of the stack.
3 Pushes the value of the property on to the stack.
For example, if “obj” is an object, and it is assigned a property, “foo”, as follows:
obj.foo = 3;

then ActionGetMember with object set to “obj” and name set to “foo” will push “3” on to the
stack. If the specified property does not exist, “undefined” is pushed to the stack.

The object parameter may not actually be an “object” type. If the object parameter is a primitive
type such as number, boolean or string, it is converted automatically to a temporary wrapper
object of class Number, Boolean or String. Thus, methods of wrapper objects may be invoked on
values of primitive types. For example:
var x = "Hello";
trace (x.length);

will correctly print “5”. In this case, the variable, “x”, contains the primitive string, "Hello".
When “x.length” is retrieved, a temporary wrapper object for “x” is created using the type, String,
which has a “length” property.

ActionInitArray

Initializes an array in a ScriptObject. Similar to ActionInitObject. The newly created object is
pushed to the stack. The stack is the only existing reference to the newly created object. A
subsequent SetVariable or SetMember action may store the newly created object in a variable.

Pops elems and then [arg1, arg2,…,argn] off the stack.

Field Type Comment

ActionGetMember UI8 Action = 0x4E

Field Type Comment

ActionInitArray UI8 Action = 0x42
SWF 5 Action Model 75

It does the following:

1 Gets the number of arguments (“elements”) from the stack.
2 If there are arguments, ActionInitArray initializes an array object with the right number

of elements.
3 Initializes the array as a ScriptObject.
4 Sets the object type to “Array”.
5 Populates the array with initial elements by popping the values off of the stack.
For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

ActionInitObject

Initializes an Object in a ScriptObject. Similar to ActionInitArray. The newly created object is
pushed to the stack. The stack is the only existing reference to the newly created object. A
subsequent SetVariable or SetMember action may store the newly created object in a variable.

Pops elems off of the stack. Pops [value1, name1, …, valueN, nameN] off the stack.

It does the following:

1 Pops the number of initial properties from the stack.
2 Initializes the object as a ScriptObject.
3 Sets the object type to “Object”.
4 Pops each initial property off the stack. For each initial property, the value of the property is

popped off the stack, then the name of the property is popped off the stack. The name of the
property is converted to a string. The value may be of any type.

For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

ActionNewMethod

Invokes a constructor function to create a new object. A new object is constructed and passed to
the constructor function as the value of the this keyword. Arguments may be specified to the
constructor function. The return value from the constructor function is discarded. The newly
constructed object is pushed to the stack. Similar to ActionCallMethod and ActionNewObject.

Field Type Comment

ActionInitObject UI8 Action = 0x43

Field Type Comment

ActionNewMethod UI8 Action = 0x53
76 Chapter 6: Actions

ActionNewMethod does the following:

1 Pops the name of the method from the stack.
2 Pops the ScriptObject from the stack. If the name of the method is blank, the ScriptObject is

treated as a function object which is invoked as the constructor function. If the method name
is not blank, the named method of the ScriptObject is invoked.

3 Pops the number of arguments from the stack.
4 Executes the method call.
5 Pushes the newly constructed object to the stack. Note, if there is no appropriate return value

(i.e: the function does not have a “return” statement), a “push undefined” is generated by the
compiler and is pushed to the stack. The “undefined” return value should be popped off
the stack.

For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

ActionNewObject

Invokes a constructor function. A new object is created and passed to the constructor function as
the this keyword. In addition, arguments may optionally be specified to the constructor
function on the stack. The return value of the constructor function is discarded. The newly
constructed object is pushed to the stack. Similar to ActionCallFunction and ActionNewMethod.

ActionNewObject does the following:

1 Pops the object name (STRING) this from the stack.
2 Pops numArgs (int) from the stack.
3 Pops the arguments off the stack.
4 Invokes the named object as a constructor function, passing it the specified arguments and a

newly constructed object as the this keyword.
5 The return value of the constructor function is discarded.
6 The newly constructed object is pushed to the stack.
For all of the call actions (ActionCallMethod, ActionNewMethod, ActionNewObject, and
ActionCallFunction) and initialization actions (ActionInitObject and ActionInitArray), the
arguments of the function are pushed onto the stack in reverse order, with the rightmost
argument first and the leftmost argument last. The arguments are subsequently popped off in
order (first to last).

Field Type Comment

ActionNewObject UI8 Action = 0x40
SWF 5 Action Model 77

ActionSetMember

Sets a property of an object. If the property does not already exist, it is created. Any existing
value in the property is overwritten.

ActionSetMember does the following:

1 Pops the new value off the stack.
2 Pops the object name off the stack.
3 Pops the object off of the stack.

ActionTargetPath

If the object in the stack is a “movieclip”, then the object’s target path is pushed on the stack in
dot notation. If the object is not a movie clip, the result is the "undefined" type rather than the
movie clip target path.

ActionTargetPath does the following:

1 Pops the object off the stack.
2 Pushes the target path on to the stack.

ActionWith

Defines a “With” block of script.

ActionWith does the following:

1 Pops the object involved with the With.
2 Parses the size (body length) of the With block from the sactionWith tag.
3 Checks to see if the depth of calls exceeds 8 (kMaxWithDepth).

If the With depth has exceeded kMaxWithDepth, the body of the With is skipped rather
than executed.

4 Parses the object involved with the With from the sactionWith tag.
5 Adds the With block to the ActionContext for this ScriptThread.

Field Type Comment

ActionSetMember UI8 Action = 0x4F

Field Type Comment

ActionTargetPath UI8 Action = 0x45

Field Type Comment

ActionWith UI8 Action = 0x94

Size UI16

withblock STRING
78 Chapter 6: Actions

Type Actions

ActionToNumber

Converts the object on the top of the stack into a number, and pushes the number back to
the stack.

For the “object” type, the valueOf method is invoked to convert the “object” to a “number” type
for ActionToNumber. Conversions between primitive types, such as from string to number, are
built-in.

ActionToNumber does the following:

1 Pops the object off of the stack.
2 Pushes the number on to the stack.

ActionToString

Converts the object on the top of the stack into a string, and pushes the string back to the stack.

Note that for “object” type, the toString method is invoked to convert the “object” to “string”
type for ActionToString.

ActionToString does the following:

1 Pops the object off of the stack.
2 Pushes the string on to the stack.

ActionTypeOf

Pushes the “TypeOf” value to the stack. The possible types are:
"number"
"boolean"
"string"
"object"
"movieclip"
"null"
"undefined"
"function"

ActionTypeOf does the following:

1 Pops value to determine the type of off the stack.
2 Pushes a string with the type of the object on to the stack.

Field Type Comment

ActionToNumber UI8 Action = 0x4A

Field Type Comment

ActionToString UI8 Action = 0x4B

Field Type Comment

ActionTypeOf UI8 Action = 0x44
SWF 5 Action Model 79

Math Actions

ActionAdd2

This action is similar to ActionAdd, but performs the addition differently according to the data
types of the arguments. The addition operator algorithm in ECMA-262 Section 11.6.1 is used. If
string concatenation is applied, the concatenated string is arg2 followed by arg1.

It does the following:

1 Pops arg1 off of the stack.
2 Pops arg2 off of the stack.
3 Pushes the result back to the stack.

ActionLess2

Calculates whether arg1 is less than arg2. Pushes a Boolean return value to the stack. This action
is similar to ActionLess, but performs the comparison differently according to the data types of
the arguments. The abstract relational comparison algorithm in ECMA-262 Section 11.8.5
is used.

It does the following:

1 Pops arg1 off of the stack.
2 Pops arg2 off of the stack.
3 Compares arg2 < arg1.
4 Pushes the return value (a Boolean) onto the stack.

ActionModulo

Calculates x modulo y. If y is 0, then NaN (0x7FC00000) is pushed to the stack.

It does the following:

1 Pops x then y off of the stack.
2 Pushes the value x % y on to the stack.

Field Type Comment

ActionAdd2 UI8 Action = 0x47

Field Type Comment

ActionLess2 UI8 Action = 0x48

Field Type Comment

ActionModulo UI8 Action = 0x3F
80 Chapter 6: Actions

Stack Operator Actions

ActionBitAnd

Pops two numbers off of the stack and performs a bitwise “And”. Pushes an S32 number to the
stack. The arguments are converted to 32-bit unsigned integers prior to performing the bitwise
operation. The result is a SIGNED 32-bit integer.

It does the following:

1 Pops arg1 then arg2 off of the stack.
2 Pushes the result to the stack.

ActionBitLShift

Pops the shift count “arg” and then “value” off of the stack. The value argument is converted to
32-bit signed integer and only the least significant 5 bits are used as the shift count. The bits in
the value “arg” are shifted to the left by the shift count. ActionBitLShift pushes an S32 number to
the stack.

It does the following:

1 Pops shift count arg then value off of the stack.
2 Pushes the result to the stack.

ActionBitOr

Pops two numbers off of the stack and performs a bitwise “Or”. Pushes an S32 number to the
stack. The arguments are converted to 32-bit unsigned integers prior to performing the bitwise
operation. The result is a SIGNED 32-bit integer.

It does the following:

1 Pops arg1 then arg2 off of the stack.
2 Pushes the result to the stack.

ActionBitRShift

Pops the shift count from the stack. Pops the value from the stack. The value argument is
converted to a 32-bit signed integer and only the least significant 5 bits are used as the shift count.

Field Type Comment

ActionBitAnd UI8 Action = 0x60

Field Type Comment

ActionBitLShift UI8 Action = 0x63

Field Type Comment

ActionBitOr UI8 Action = 0x61
SWF 5 Action Model 81

The bits in the value “arg” are shifted to the right by the shift count. ActionBitRShift pushes an
S32 number to the stack.

It does the following:

1 Pops shift count from the stack.
2 Pops the value to shift from the stack.
3 Pushes the result to the stack.

ActionBitURShift

Pops the value and shift count arguments from the stack. The value argument is converted to 32-
bit signed integer and only the least significant 5 bits are used as the shift count.

The bits in the value “arg” are shifted to the right by the shift count. ActionBitURShift pushes a
UI32 number to the stack.

It does the following:

1 Pops shift count from the stack.
2 Pops the value to shift from the stack.
3 Pushes the result to the stack.

ActionBitXor

Pops two numbers off of the stack and performs a bitwise “Xor”. Pushes an S32 number to
the stack.

The arguments are converted to 32-bit unsigned integers prior to performing the bitwise
operation. The result is a SIGNED 32-bit integer.

It does the following:

1 Pops arg1 and arg2 off of the stack.
2 Pushes the result back to the stack.

Field Type Comment

ActionBitRShift UI8 Action = 0x64

Field Type Comment

ActionBitURShift UI8 Action = 0x65

Field Type Comment

ActionBitXor UI8 Action = 0x62
82 Chapter 6: Actions

ActionDecrement

Pops a value from the stack, converts it to number type, decrements it by 1, and pushes it back to
the stack.

It does the following:

1 Pops the number off of the stack.
2 Pushes the result on to the stack.

ActionIncrement

Pops a value from the stack, converts it to number type, increments it by 1, and pushes it back to
the stack.

It does the following:

1 Pops the number off of the stack.
2 Pushes the result on to the stack.

ActionPush (Enhancements)

With Flash 5, 8 new types were added to ActionPush. Please see the SWF 4 Actions section for all
details on ActionPush.

ActionPushDuplicate

Pushes a duplicate of top of stack (the current return value) to the stack.

It pushes a duplicate of the current return value to the stack.

ActionReturn

Forces the return item to be pushed off the stack and returned. If a return is not appropriate, the
return item is discarded.

It pops a value off the stack.

Field Type Comment

ActionDecrement UI8 Action = 0x51

Field Type Comment

ActionIncrement UI8 Action = 0x50

Field Type Comment

ActionPushDuplicate UI8 Action = 0x4C

Field Type Comment

ActionReturn UI8 Action = 0x3E
SWF 5 Action Model 83

ActionStackSwap

Swaps the top two ScriptAtoms on the stack.

It does the following:

1 Pops Item1 and then Item2 off of the stack.
2 Pushes Item2 and then Item1 back to the stack.

ActionStoreRegister

Reads the next object from the stack (without popping it) and stores it in one of 4 registers. If
ActionDefineFunction2 is used, up to 256 registers are available.

It parses register number from the StoreRegister tag.

SWF 6 Action Model

SWF version 6 adds a new action-definition tag, DoInitAction, and a few new action bytecodes.

SWF 6 Actions

The following actions are available in SWF 6:

DoInitAction Tag

The DoInitAction tag is similar to the DoInitAction Tag: it defines a series of bytecodes to be
executed. However, the actions defined with DoInitAction are executed earlier than the usual
DoAction actions, and are executed only once.

There are situations in which there are actions that must be executed before the ActionScript
representation of the first instance of a particular sprite is created. The most common such action
is calling Object.registerClass to associate an ActionScript class with a sprite. Such a call is
generally found within the #initclip pragma in the ActionScript language. DoInitAction is used
to implement the #initclip pragma.

Field Type Comment

ActionStackSwap UI8 Action = 0x4D

Field Type Comment

ActionStoreRegister UI8 Action = 0x87

register number UI8

SWF 6 Actions

DoInitAction Tag
ActionInstanceOf
ActionEnumerate2
ActionStrictEquals
ActionGreater
ActionStringGreater
84 Chapter 6: Actions

A DoInitAction tag specifies a particular sprite to which its actions apply. There may be multiple
DoInitAction tags in a single frame; their actions will be executed in the order in which the tags
appear. However, there may only be one DoInitAction tag anywhere in the SWF file for any
particular sprite.

The specified actions are executed immediately before the normal actions of the frame in which
the DoInitAction tag appears. This only occurs the first time that this frame is encountered – if
playback reaches the same frame again later, actions provided in DoInitAction are skipped.
Note: Specifying actions at the beginning of a DoAction tag is not the same as specifying them in a
DoInitAction tag. There are steps that Flash Player takes before the first action in a DoAction tag,
most relevantly the creation of ActionScript objects that represent sprites. The actions in
DoInitAction occur before these implicit steps are performed.

ActionInstanceOf

Implements the ActionScript instanceof operator. This is a Boolean operator that indicates
whether the left operand (typically an object) is an instance of the class represented by a
constructor function passed as the right operand.

Additionally, with SWF 7 or later, ActionInstanceOf also supports with interfaces. If the right
operand constructor is a reference to an interface object, and the left operand implements this
interface, ActionInstanceOf will accurately report that the left operand is an instance of the right
operand.

It does the following:

1 Pops constr then obj off of the stack.
2 Determines if obj is an instance of constr.
3 Pushes the return value (a Boolean) onto the stack.

ActionEnumerate2

Similar to ActionEnumerate, but uses a stack argument of object type rather than using a string to
specify its name.

Field Type Comment

Header RECORDHEADER Tag type = 59

Sprite ID UI16 Sprite to which these actions apply

Actions ACTIONRECORD[zero or more] List of actions to perform

ActionEndFlag UI8 Always set to 0

Field Type Comment

ActionInstanceOf UI8 Action = 0x54

Field Type Comment

ActionEnumerate2 UI8 Action = 0x55
SWF 6 Action Model 85

It does the following:

1 Pops obj off of the stack.
2 Pushes a null value onto the stack to indicate the end of the slot names.
3 Pushes each slot name (a string) from obj onto the stack.
Note: The order in which slot names are pushed is undefined.

ActionStrictEquals

Similar to ActionEquals2, but the two arguments must be of the same type in order to be
considered equal. Implements the ‘===’ operator from the ActionScript language.

It does the following:

1 Pops arg1 then arg2 off the stack.
2 Pushes the return value, a Boolean, to the stack.

ActionGreater

Exact opposite of ActionLess2. Originally there was no ActionGreater, because it can be emulated
by reversing the order of argument pushing, then performing an ActionLess followed by an
ActionNot. However, this argument reversal resulted in a reversal of the usual order of evaluation
of arguments, which in a few cases led to surprises.

It does the following:

1 Pops arg1 and then arg2 off of the stack.
2 Compares if arg2 > arg1.
3 Pushes the return value, a Boolean, onto the stack.

ActionStringGreater

Exact opposite of ActionStringLess. This action code was added for the same reasons as
ActionGreater.

It does the following:

1 Pops arg1 and then arg2 off of the stack.
2 Compares if arg2 > arg1, using byte-by-byte comparison.
3 Pushes the return value, a Boolean, onto the stack.

Field Type Comment

ActionStrictEquals UI8 Action = 0x66

Field Type Comment

ActionGreater UI8 Action = 0x67

Field Type Comment

ActionStringGreater UI8 Action = 0x68
86 Chapter 6: Actions

SWF 7 Action Model

SWF 7 Actions

The following actions are available in SWF 7:

ActionDefineFunction2

ActionDefineFunction2 is similar to ActionDefineFunction, with additional features that can
help speed up the execution of function calls by preventing the creation of unused variables in the
function’s activation object and by enabling the replacement of local variables with a variable
number of registers. With ActionDefineFunction2, a function may allocate its own private set of
up to 256 registers. Parameters or local variables may be replaced with a register, which will be
loaded with the value instead of the value being stored in the function’s activation object. (The
activation object is an implicit local scope that contains named arguments and local variables. See
the ECMA-262 standard for further description of the activation object.)

ActionDefineFunction2 also includes six flags to instruct Flash Player to preload variables, and
three flags to suppress variables. By setting PreloadParentFlag, PreloadRootFlag,
PreloadSuperFlag, PreloadArgumentsFlag, PreloadThisFlag, or PreloadGlobalFlag,
common variables may be preloaded into registers before the function executes (_parent, _root,
super, arguments, this, or _global, respectively). With flags SuppressSuper,
SuppressArguments, and SuppressThis, common variables super, arguments, and this
will not be created. By using suppress flags, Flash Player avoids pre-evaluating variables, thus
saving time and improving performance.

No suppress flags are provided for _parent, _root, or _global because Flash Player always
evaluates these variables as needed; no time is ever wasted on pre-evaluating these variables.

It is not legal to specify both the preload flag and the suppress flag for any variable.

The body of the function defined by ActionDefineFunction2 should use ActionPush and
ActionStoreRegister for local variables that are assigned to registers. ActionGetVariable and
ActionSetVariable cannot be used for variables assigned to registers.

SWF 7 Actions

ActionDefineFunction2
ActionExtends
ActionCastOp
ActionImplementsOp
ActionTry
ActionThrow
SWF 7 Action Model 87

Flash Player 6 release 65 and later supports ActionDefineFunction2.

Field Type Comment

ActionDefineFunction2 UI8 Action = 0x8E

FunctionName STRING name of function, empty if
anonymous

NumParams UI16 # of parameters

RegisterCount UI8 number of registers to allocate

PreloadParentFlag UB[1] 0 - Don’t preload _parent into
register
1 - Preload _parent into register

PreloadRootFlag UB[1] 0 - Don’t preload _root into
register
1 - Preload _root into register

SuppressSuperFlag UB[1] 0 - Create super variable
1 - Don’t create super variable

PreloadSuperFlag UB[1] 0 - Don’t preload super into
register
1 - Preload super into register

SuppressArgumentsFlag UB[1] 0 - Create arguments variable
1 - Don’t create arguments variable

PreloadArgumentsFlag UB[1] 0 - Don’t preload arguments into
register
1 - Preload arguments into register

SuppressThisFlag UB[1] 0 - Create this variable
1 - Don’t create this variable

PreloadThisFlag UB[1] 0 - Don’t preload this into register
1 - Preload this into register

Reserved UB[7] Always 0

PreloadGlobalFlag UB[1] 0 - Don’t preload _global into
register
1 - Preload _global into register

Parameters REGISTERPARAM[NumParams] See REGISTERPARAM, below

codeSize UI16 # of bytes of code that follow
88 Chapter 6: Actions

REGISTERPARAM is defined as follows.

The function body following an ActionDefineFunction2 consists of further action codes, just as
for ActionDefineFunction.

Flash Player selects register numbers by first copying each argument into the register specified in
the corresponding REGISTERPARAM record. Next, the preloaded variables are copied into
registers starting at 1, and in the order this, arguments, super, _root, _parent, and
_global, skipping any that are not to be preloaded. (The SWF file must accurately specify
which registers are going to be used by preloaded variables and ensure that no parameter uses a
register number that falls within this range, or else that parameter will be overwritten by a
preloaded variable.)

The value of NumParams should equal the number of parameter registers. The value of
RegisterCount should equal NumParams plus the number of preloaded variables and the number
of local variable registers desired.

For example, if NumParams is 2, RegisterCount is 6, PreloadThisFlag is 1, and PreloadRootFlag
is 1, the REGISTERPARAM records will probably specify registers 3 and 4. Register 1 will be
this, register 2 will be _root, registers 3 and 4 will be the first and second parameters, and
registers 5 and 6 will be for local variables.

ActionExtends

Implements the ActionScript extends keyword. ActionExtends creates an inheritance
relationship between two classes, called the subclass and the superclass.

SWF 7 adds ActionExtends to the file format in order to avoid spurious calls to the superclass
constructor function (which would occur when inheritance was established under ActionScript
1.0). Consider the following code:
Subclass.prototype = new Superclass();

Field Type Comment

Register UI8 For each parameter to the function,
a register may be specified.
If the register specified is zero, the
parameter is created as a variable
named ParamName in the
activation object, which can be
referenced with ActionGetVariable
and ActionSetVariable.
If the register specified is non-zero,
the parameter is copied into the
register, and it can be referenced
with ActionPush and
ActionStoreRegister, and no
variable is created in the activation
object.

ParamName STRING parameter name
SWF 7 Action Model 89

Prior to the existence of ActionExtends, this code would result in a spurious call to the
superconstructor function Superclass. Now, ActionExtends is generated by the ActionScript
compiler when the code class A extends B is encountered, to set up the inheritance
relationship between A and B.

It does the following:

1 Pops the ScriptObject superclass constructor off the stack.
2 Pops the ScriptObject subclass constructor off the stack.
3 Creates a new ScriptObject.
4 Sets the new ScriptObject’s __proto__ property to the superclass’ prototype property.
5 Sets the new ScriptObject’s __constructor__ property to the superclass.
6 Sets the subclass’ prototype property to the new ScriptObject.
These steps are the equivalent to the following ActionScript:
Subclass.prototype = new Object();
Subclass.prototype.__proto__ = Superclass.prototype;
Subclass.prototype.__constructor__ = Superclass;

ActionCastOp

Implements the ActionScript cast operator, which allows the casting from one data type to
another. ActionCastOp pops an object off the stack and attempts to convert the object to an
instance of the class or to the interface represented by the constructor function.

It does the following:

1 Pops the ScriptObject to cast off the stack.
2 Pops the constructor function off the stack.
3 Determines if object is an instance of constructor (doing the same comparison as

ActionInstanceOf).
4 If the object is an instance of constructor, the popped ScriptObject is pushed onto the stack. If

the object is not an instance of constructor, a null value is pushed onto the stack.

ActionImplementsOp

Implements the ActionScript implements keyword. The ActionImplementsOp action specifies
the interfaces a class implements, for use by ActionCastOp. ActionImplementsOp can also specify
the interfaces an interface implements, as interfaces can extend other interfaces.

Field Type Comment

ActionExtends UI8 Action = 0x69

Field Type Comment

ActionCastOp UI8 Action = 0x2B

Field Type Comment

ActionImplementsOp UI8 Action = 0x2C
90 Chapter 6: Actions

It does the following:

1 Pops constructor function off the stack. The constructor function represents the class that will
implement the interfaces. The constructor function must have a prototype property.

2 Pops the count of implemented interfaces off the stack.
3 For each interface count, pops a constructor function off of the stack. The constructor function

represents an interface.
4 Sets the constructor function’s list of interfaces to the array collected in the previous step, and

sets the count of interfaces to the count popped in step 2.

ActionTry

ActionTry defines handlers for exceptional conditions, implementing the ActionScript try,
catch, and finally keywords.

Note: The CatchSize and FinallySize fields always exist, whether or not the CatchBlockFlag or
FinallyBlockFlag settings are 1.

Note: The try, catch and finally blocks do not use end tags to mark the end of their respective blocks.
Instead, the length of a block is set by the TrySize, CatchSize and FinallySize values.

Field Type Comment

ActionTry UI8 Action = 0x8F

Reserved UB[5] Always zero

CatchInRegisterFlag UB[1] 0 - Do not put caught object into
register (instead, store in named
variable)
1 - Put caught object into register (do not
store in named variable)

FinallyBlockFlag UB[1] 0 - No finally block
1 - Has finally block

CatchBlockFlag UB[1] 0 - No catch block
1 - Has catch block

TrySize UI16 Length of the try block

CatchSize UI16 Length of the catch block

FinallySize UI16 Length of the finally block

CatchName If CatchInRegisterFlag = 0, STRING Name of the catch variable

CatchRegister If CatchInRegisterFlag = 1, UI8 Register to catch into

TryBody UI8[TrySize] Body of the try block

CatchBody UI8[CatchSize] Body of the catch block, if any

FinallyBody UI8[FinallySize] Body of the finally block, if any
SWF 7 Action Model 91

ActionThrow

ActionThrow implements the ActionScript throw keyword. ActionThrow is used to signal, or
throw, an exceptional condition, which will be handled by the exception handlers declared with
ActionTry.

If any code within the try block throws an object, control passes to the catch block, if one exists,
then to the finally block, if one exists. The finally block always executes, regardless of
whether an error was thrown.

If an exceptional condition occurs within a function and the function does not include a catch
handler, the function and any caller functions are exited until a catch block is found (executing
all finally handlers at all levels).

Any ActionScript data type can be thrown, though typically usage is to throw objects.

ActionThrow pops the value to be thrown off the stack.

Field Type Comment

ActionThrow UI8 Action = 0x2A
92 Chapter 6: Actions

CHAPTER 7
Shapes
The Macromedia Flash (SWF) shape architecture is designed to be compact, flexible and rendered
very quickly to the screen. It is similar to most vector formats in that shapes are defined by a list of
edges called a path. A path may be closed, where the start and end of the path meet to close the
figure, or open, where the path forms an open-ended stroke. A path may contain a mixture of
straight edges, curved edges, and ‘pen up and move’ commands. The latter allows multiple
disconnected figures to be described by a single shape structure.

A fill style defines the appearance of an area enclosed by a path. Fill styles supported by SWF file
format include a color, a gradient, or a bitmap image.

A line style defines the appearance of the outline of a path. The line style may be a stroke of any
thickness and color.

Most vector formats only allow one fill and line style per path. SWF file format extends this
concept by allowing each edge to have its own line and fill style. This can have unpredictable
results when fill styles change in the middle of a path.

Flash also supports two fill styles per edge, one for each side of the edge: FillStyle0 and FillStyle1.
FillStyle0 should always be used first and then FillStyle1 if the shape is filled on both sides of
the edge.

Shape Overview

A shape is composed of the following elements:

CharacterId A 16-bit value that uniquely identifies this shape as a ‘character’ in the dictionary.
The CharacterId can be referred to in control tags such as PlaceObject. Characters can be reused
and combined with other characters to make more complex shapes.

Bounding box The rectangle that completely encloses the shape.

Fill style array A list of all the fill styles used in a shape.

Line style array A list of all the line styles used in a shape.

Shape record array A list of shape records. Shape records can define straight or curved edges,
style changes, or move the drawing position.
Note: Line and fill styles are defined once only and may be used (and reused) by any of the edges in
the shape.
93

Shape Example

The following example appears to be a collection of shapes, but it can be described with a single
DefineShape tag.

The red circle, red square and green rounded-rectangle are closed paths. The curved line is an
open path. The red square consists of all straight edges, the red circle consists of all curved edges,
while the rounded rectangle has curved edges interspersed with straight edges.

There are two fill styles; solid green and solid red, and two line styles; 1-pixel black, and 2-pixel
black. The red circle and red square share the same fill and line styles. The rounded rectangle
and curved line share the same line style.

Here’s how to describe this example with SWF file format.

Define the fill styles:

1 First, the fill styles are defined with a FILLSTYLEARRAY. The two unique fill styles are solid
red and solid green.

2 This is followed by a LINESTYLEARRAY that includes the two unique line styles; 1-pixel
black, and 2-pixel black.

3 This is followed by an array of Shape Records.
All shape records share a similar structure but can have varied meaning. A shape record can
define straight or curved edge, a style change, or it can move the current drawing position.

Define the curved line:

1 The first shape record selects the 2-pixel wide line style, and moves the drawing position to the
top of the curved line by setting the StateMoveTo flag.

2 The next shape record is a curved edge, which ends to the bottom of the line. The path is
not closed.

Define the red square:

1 The next shape record selects the 1-pixel line style and the red fill style. It also moves the
drawing position to the upper left corner of the red rectangle.

2 The following four shape records are straight edges. The last edge must end at the upper left
corner. Flash requires that closed figures be joined explicitly. That is, the first and last points
must be coincident.
94 Chapter 7: Shapes

Define the red circle:

1 The next shape record does not change any style settings, but moves the drawing position to the
top of the red circle.

2 The following eight shape records are curved edges that define the circle. Again, the path must
finish where it started.

Define the green rounded-rectangle:

1 The next shape record selects the 2-pixel wide line style, and the green fill. It also moves the
drawing position to the upper left of the rounded-rectangle.

2 The following twelve shape records are a mixture of straight shape records (the sides)
interspersed with curved shape records (the rounded corners). The path finishes where it began.

Shape Structures

Fill Styles

SWF file format supports three basic types of fills for a shape.

Solid fill A simple RGB or RGBA color that fills a portion of a shape. An alpha value of 255
means a completely opaque fill. An alpha value of zero means a completely transparent fill. Any
alpha between 0 and 255 will be partially transparent.

Gradient Fill A gradient fill can be either a linear or a radial gradient. See Gradients for an in
depth description of how gradients are defined.

Bitmap fill Bitmap fills refer to a bitmap characterId. There are two styles: clipped and tiled. A
clipped bitmap fill repeats the color on the edge of a bitmap if the fill extends beyond the edge of
the bitmap. A tiled fill repeats the bitmap if the fill extends beyond the edge of the bitmap.

FILLSTYLEARRAY

A fill style array enumerates a number of fill styles. The format of a fill style array is described in
the following table:

FILLSTYLEARRAY

Field Type Comment

FillStyleCount UI8 Count of fill styles

FillStyleCountExtended If FillStyleCount = 0xFF UI16 Extended count of fill styles. Supported
only for Shape2 and Shape3.

FillStyles FILLSTYLE[FillStyleCount] Array of fill styles
Shape Structures 95

FILLSTYLE

The format of a fill style value within the file is described in the following table:

Line Styles

A line style array enumerates a number of line styles.

LINESTYLEARRAY

The format of a line style array is described in the following table:

FILLSTYLE

Field Type Comment

FillStyleType UI8 Type of fill style
0x00 = solid fill
0x10 = linear gradient fill
0x12 = radial gradient fill
0x40 = repeating bitmap
fill
0x41 = clipped bitmap fill
0x42 = non-smoothed
repeating bitmap
0x43 = non-smoothed
clipped bitmap

Color If type = 0x00 RGBA (if Shape3); RGB (if
Shape1 or Shape2)

Solid fill color with
transparency information

GradientMatrix If type = 0x10 or 0x12 MATRIX Matrix for gradient fill

Gradient If type = 0x10 or 0x12 GRADIENT Gradient fill

BitmapId If type = 0x40, 0x41, 0x42 or 0x43 UI16 ID of bitmap character for
fill

BitmapMatrix If type = 0x40, 0x41, 0x42 or 0x43 MATRIX Matrix for bitmap fill

LINESTYLEARRAY

Field Type Comment

LineStyleCount UI8 Count of line styles

LineStyleCountExtended If LineStyleCount = 0xFF UI16 Extended count of line
styles

LineStyles LINESTYLE[count] Array of line styles
96 Chapter 7: Shapes

LINESTYLE

A line style represents a width and color of a line. The format of a line style value within the file is
described in the following table:

Notes:

1 All lines in SWF file format have rounded joins and end-caps. Different join styles and end
styles can be simulated with a very narrow shape that looks identical to the desired stroke.

2 SWF file format has no native support for dashed or dotted line styles. A dashed line can be
simulated by breaking up the path into a series of short lines.

Shape structures

The SHAPE structure defines a shape without a fill style or line style information.

SHAPE

SHAPE is used by the DefineFont tag, to define character glyphs.

SHAPEWITHSTYLE

The SHAPEWITHSTYLE structure extends the SHAPE structure by including fill style and line
style information. SHAPEWITHSTYLE is used by the DefineShape tag.

LINESTYLE

Field Type Comment

Width UI16 Width of line in twips

Color RGB (Shape1 or Shape2)
RGBA (Shape3)

Color value including alpha channel
information for Shape3

SHAPE

Field Type Comment

NumFillBits UB[4] Number of fill index bits

NumLineBits UB[4] Number of line index bits

ShapeRecords SHAPERECORD[one or
more]

Shape records - see below

SHAPEWITHSTYLE

Field Type Comment

FillStyles FILLSTYLEARRAY Array of fill styles

LineStyles LINESTYLEARRAY Array of line styles

NumFillBits UB[4] Number of fill index bits

NumLineBits UB[4] Number of line index bits

ShapeRecords SHAPERECORD[one or
more]

Shape records (see below)
Shape Structures 97

Note: The LINESTYLELARRAY and FILLSTYLEARRAY begin at index 1, not index 0.

The following diagram illustrates the SHAPEWITHSTYLE structure.

First, the Fill styles and Line styles are defined. These are defined once only and are referred to by
array index.

The blue area represents the array of Shape Records.The first shape record selects a fill from the
fill style array, and moves the drawing position to the start of the shape.

This is followed by a series of edge records that define the shape.

The next record changes the fill style, and the subsequent edge records are filled using this
new style.

This tag is a completely autonomous object. The style change records only refer to fill and line
styles that have been defined in this tag.

Shape Records

There are four types of shape records:

• End shape record
• Style change record
• Straight edge record
• Curved edge record

All shape records begin with a TypeFlag. If the TypeFlag is zero, the shape record is a non-edge
record, and a further five bits of flag information follow.

Fill Styles

Line Styles

Change Fills

Edges

Change Fills

Edges

Shape Tag
98 Chapter 7: Shapes

EndShapeRecord

The end shape record simply indicates the end of the shape record array. It is a non-edge record
with all five flags equal to zero.

StyleChangeRecord

The style change record is also a non-edge record. It can be used to do the following:

1 Select a fill or line style for drawing.
2 Move the current drawing position (without drawing).
3 Replace the current fill and line style arrays with a new set of styles.

ENDSHAPERECORD

Field Type Comment

TypeFlag UB[1] Non-edge record flag
Always 0

EndOfShape UB[5] End of shape flag
Always 0
Shape Structures 99

Because fill and line styles often change at the start of a new path, it is useful to perform more
than one action in a single record. For example, say a DefineShape tag defines a red circle and a
blue square. After the circle is closed, it is necessary to move the drawing position, and replace the
red fill with the blue fill. The style change record can achieve this with a single shape record.

In the first shape record MoveDeltaX and MoveDeltaY are relative to the shape origin.
In subsequent shape records, MoveDeltaX and MoveDeltaY are relative to the current
drawing position.

The style arrays begin at index 1, not index 0. FillStyle = 1 refers to the first style in the fill style
array, FillStyle = 2 refers to the second style in the fill style array, and so on. A fill style index of
zero means the path is not filled, and a line style index of zero means the path has no stroke.
Initially the fill and line style indices are set to zero—no fill or stroke.

STYLECHANGERECORD

Field Type Comment

TypeFlag UB[1] Non-edge record flag
Always 0

StateNewStyles UB[1] New styles flag. Used by
DefineShape2 and
DefineShape3 only.

StateLineStyle UB[1] Line style change flag

StateFillStyle1 UB[1] Fill style 1 change flag

StateFillStyle0 UB[1] Fill style 0 change flag

StateMoveTo UB[1] Move to flag

MoveBits If StateMoveTo
UB[5]

Move bit count

MoveDeltaX If StateMoveTo
SB[MoveBits]

Delta X value

MoveDeltaY If StateMoveTo
SB[MoveBits]

Delta Y value

FillStyle0 If StateFillStyle0
UB[FillBits]

Fill 0 Style

FillStyle1 If StateFillStyle1
UB[FillBits]

Fill 1 Style

LineStyle If StateLineStyle
UB[LineBits]

Line Style

FillStyles If StateNewStyles FILLSTYLEARRAY Array of new fill styles

LineStyles If StateNewStyles LINESTYLEARRAY Array of new line styles

NumFillBits If StateNewStyles
UB[4]

Number of fill index bits for new
styles

NumLineBits If StateNewStyles
UB[4]

Number of line index bits for
new styles
100 Chapter 7: Shapes

FillStyle0 and FillStyle1

Flash supports two fill styles per edge, one for each side of the edge: FillStyle0 and FillStyle1. For
shapes that don’t self-intersect or overlap, FillStyle0 should be used. For overlapping shapes the
situation is more complex.

For example, if a shape consists of two overlapping squares, and only FillStyle0 is defined, Flash
Player renders a ‘hole’ where the paths overlap. This area can be filled using FillStyle1. In this
situation, the rule is that for any directed vector, FillStyle0 is the color to the left of the vector, and
FillStyle1 is the color to the right of the vector (as shown in the following diagram).

Note: FillStyle0 and FillStyle1 should not be confused with FILLSTYLEARRAY indices. FillStyle0
and FillStyle1 are variables that contain indices into the FILLSTYLEARRAY.

Edge Records

Edge records have a TypeFlag of 1. There are two types of edge records: straight and curved. The
StraightFlag determines the type.

StraightEdgeRecord

The StraightEdgeRecord stores the edge as an X-Y delta. The delta is added to the current
drawing position, and this becomes the new drawing position. The edge is rendered between the
old and new drawing positions.
Shape Structures 101

Straight edge records support three types of line:

1 General lines.
2 Horizontal lines.
3 Vertical lines.
General lines store both X and Y deltas, the horizontal and vertical lines store only the X delta and
Y delta respectively.

CurvedEdgeRecord

SWF file format differs from most vector file formats by using Quadratic Bezier curves rather
than Cubic Bezier curves. PostScript uses Cubic Beziers, as do most drawing applications. SWF
file format uses Quadratic Bezier curves because they can be stored more compactly, and can be
rendered more efficiently.

The following diagram shows a Quadratic Bezier curve and a Cubic Bezier curve.

A Quadratic Bezier curve has 3 points: 2 on-curve anchor points, and 1 off-curve control point. A
Cubic Bezier curve has 4 points: 2 on-curve anchor points, and 2 off-curve control points.

STRAIGHTEDGERECORD

Field Type Comment

TypeFlag UB[1] This is an edge record
Always 1

StraightFlag UB[1] Straight edge
Always 1

NumBits UB[4] Number of bits per value
(2 less than the actual number)

GeneralLineFlag UB[1] General Line equals 1
Vert/Horz Line equals 0

DeltaX If GeneralLineFlag
SB[NumBits+2]

X delta

DeltaY If GeneralLineFlag
SB[NumBits+2]

Y delta

VertLineFlag If GeneralLineFlag
SB[1]

Vertical Line equals 1
Horizontal Line equals 0

DeltaX If VertLineFlag
SB[NumBits+2]

X delta

DeltaY If VertLineFlag
SB[NumBits+2]

Y delta
102 Chapter 7: Shapes

The curved-edge record stores the edge as two X-Y deltas. The three points that define the
Quadratic Bezier are calculated like this:

1 The first anchor point is the current drawing position.
2 The control point is the current drawing position + ControlDelta.
3 The last anchor point is the current drawing position + ControlDelta + AnchorDelta.
The last anchor point becomes the current drawing position.

Converting between Quadratic and Cubic Bezier curves

Simply replace the single off-curve control point of the Quadratic Bezier curve with two new
off-curve control points for the Cubic Bezier curve. Place each new off-curve control point along
the line between one of the on-curve anchor points and the original off-curve control point. The
new off-curve control points should be 2/3 of the way from the on-curve anchor point to the
original off-curve control point. The diagram of Quadratic and Cubic Bezier curves above
illustrates this substitution.

A Cubic Bezier curve can be only be approximated with a Quadratic Bezier curve, since you
are going from a third-order curve to a second-order curve. This involves recursive subdivision
of the curve, until the cubic curve and the quadratic equivalent are matched within some
arbitrary tolerance.

For a discussion of how to approximate Cubic Bezier curves with Quadratic Bezier curves see
the following:

• Converting Bezier Curves to Quadratic Splines at www.research.microsoft.com/~hollasch/
cgindex/curves/cbez-quadspline.html

• TrueType Reference Manual, Converting Outlines to the TrueType Format at http://
developer.apple.com/fonts/TTRefMan/RM08/appendixE.html.

CURVEDEDGERECORD

Field Type Comment

TypeFlag UB[1] This is an edge record.
Always 1.

StraightFlag UB[1] Curved edge.
Always 0.

NumBits UB[4] Number of bits per value
(2 less than the actual number)

ControlDeltaX SB[NumBits+2] X control point change

ControlDeltaY SB[NumBits+2] Y control point change

AnchorDeltaX SB[NumBits+2] X anchor point change

AnchorDeltaY SB[NumBits+2] Y anchor point change
Shape Structures 103

http://developer.apple.com/fonts/TTRefMan/RM08/appendixE.html
http://developer.apple.com/fonts/TTRefMan/RM08/appendixE.html
http://www.research.microsoft.com/~hollasch/cgindex/curves/cbez-quadspline.html
http://www.research.microsoft.com/~hollasch/cgindex/curves/cbez-quadspline.html

Shape Tags

DefineShape

The DefineShape tag defines a shape for later use by control tags such as PlaceObject. The
ShapeId uniquely identifies this shape as ‘character’ in the Dictionary. The ShapeBounds field is
the rectangle that completely encloses the shape. The SHAPEWITHSTYLE structure includes
all the paths, fill styles and line styles that make up the shape.

The minimum file format version is SWF 1.

DefineShape2

DefineShape2 extends the capabilities of DefineShape with the ability to support more than 255
styles in the style list and multiple style lists in a single shape.

The minimum file format version is SWF 2.

DefineShape3

DefineShape3 extends the capabilities of DefineShape2 by extending all of the RGB color fields
to support RGBA with alpha transparency.

The minimum file format version is SWF 3.

DefineShape

Field Type Comment

Header RECORDHEADER Tag type = 2

ShapeId UI16 ID for this character

ShapeBounds RECT Bounds of the shape

Shapes SHAPEWITHSTYLE Shape information

DefineShape2

Field Type Comment

Header RECORDHEADER Tag type = 22

ShapeId UI16 ID for this character

ShapeBounds RECT Bounds of the shape

Shapes SHAPEWITHSTYLE Shape information

DefineShape3

Field Type Comment

Header RECORDHEADER Tag type = 32

ShapeId UI16 ID for this character

ShapeBounds RECT Bounds of the shape

Shapes SHAPEWITHSTYLE Shape information
104 Chapter 7: Shapes

CHAPTER 8
Gradients
Gradients are a special type of shape fill for Macromedia Flash (SWF) shapes. They create ramps
of colors that interpolate between two or more fixed colors.

Here is an overview of the Macromedia Flash (SWF) gradient model:

• There are two styles of gradient: Linear and Radial.
• Each gradient has its own transformation matrix, and can be transformed independently of its

parent shape.
• A gradient can have up to eight control points. Colors are interpolated between the control

points to create the color ramp.
• Each control point is defined by a ratio and an RGBA color. The ratio determines the position

of the control point in the gradient, the RGBA value determines its color.

Below are some examples of Flash gradients (from left to right):

• A simple white-to-black linear gradient.
• A simple white-to-black radial gradient.
• A “rainbow” gradient consisting of seven control points; red, yellow, green, cyan, blue, purple,

and red.
• A three-point gradient, where the end points are opaque and the center point is transparent.

The result is a gradient in the alpha-channel that allows the diamond shape in the background
to show through.

Gradient Transformations

All gradients are defined in a standard space called the gradient square. The gradient square is
centered at (0,0), and extends from (-16384,-16384) to (16384,16384).

Each gradient is mapped from the gradient square to the display surface using a standard
transformation matrix. This matrix is stored in the FILLSTYLE structure.
105

Example: In the following diagram a linear gradient is mapped onto a circle 4096 units in
diameter, and centered at (2048,2048).

The 2x3 MATRIX required for this mapping is:
| 0.125 0.000 |
| 0.000 0.125 |
| 2048.0002048.000 |

The gradient is scaled to one-eighth of its original size (32768 / 4096 = 8), and translated to
(2048, 2048).

Gradient Control Points

The position of a control point in the gradient is determined by a ratio value between 0 and 255.
For a linear gradient, a ratio of zero maps to the left side of the gradient square, and a ratio of 255
maps to the right side. For a radial gradient, a ratio of zero maps to the center point of the
gradient square, and a ratio of 255 maps to the largest circle that fits inside the gradient square.

The color of a control point is determined by an RGBA value. An alpha value of zero means the
gradient is completely transparent at this point. An alpha value of 255 means the gradient is
completely opaque at this point.

Control points are sorted by ratio, with the smallest ratio first.

Gradient Structures

The gradient structures are part of the FILLSTYLE structure.

GRADIENT

GRADIENT

Field Type Comment

NumGradients nGrads = UI8 1 to 8

GradientRecords GRADRECORD[nGrads] Gradient records (see below)
106 Chapter 8: Gradients

GRADRECORD

The GRADRECORD defines a gradient control point:

GRADRECORD

Field Type Comment

Ratio UI8 Ratio value

Color RGB (Shape1 or Shape2)
RGBA (Shape3)

Color of gradient
Gradient Structures 107

108 Chapter 8: Gradients

CHAPTER 9
Bitmaps
Macromedia Flash (SWF) supports a variety of bitmap formats. All bitmaps are compressed to
reduce file size. Lossy compression, best for imprecise images such as photographs, is provided by
JPEG bitmaps; lossless compression, best for precise images such as diagrams, icons, or screen
captures, is provided by ZLIB bitmaps. Both types of bitmaps can optionally contain alpha
channel (transparency) information.

The JPEG format, officially defined as ITU T.81 or ISO/IEC 10918-1, is an open standard
developed by the Independent Joint Photographic Experts Group. The JPEG format is not
described in this document. For general information on the JPEG format, see JPEG at
www.jpeg.org/. For a specification of the JPEG format, see the International Telecommunication
Union at www.itu.int/ and search for recommendation T.81. The JPEG data in SWF files is
encoded using the JPEG Interchange Format specified in Annex B. Flash Player also understands
the popular JFIF format, an extension of the JPEG Interchange Format.

In all cases where arrays of non-JPEG pixel data are stored in bitmap tags, the pixels appear
in row-major order, reading like English text, proceeding left to right within rows and top to
bottom overall.

DefineBits

This tag defines a bitmap character with JPEG compression. It contains only the JPEG
compressed image data (from the Frame Header onward). A separate JPEGTables tag contains
the JPEG encoding data used to encode this image (the Tables/Misc segment).
Note: Only one JPEGTables tag is allowed in a SWF file, and thus all bitmaps defined with
DefineBits must share common encoding tables.

The data in this tag begins with the JPEG SOI marker 0xFF, 0xD8 and ends with the EOI
marker 0xFF, 0xD9.
109

http://www.jpeg.org/
http://www.itu.int/

The minimum file format version is SWF 1.

JPEGTables

This tag defines the JPEG encoding table (the Tables/Misc segment) for all JPEG images defined
using the DefineBits tag. There may only be one JPEGTables tag in a SWF file.

The data in this tag begins with the JPEG SOI marker 0xFF, 0xD8 and ends with the EOI
marker 0xFF, 0xD9.

The minimum file format version is SWF 1.

DefineBitsJPEG2

This tag defines a bitmap character with JPEG compression. It differs from DefineBits in that the
it contains both the JPEG encoding table and the JPEG image data. This tag allows multiple
JPEG images with differing encoding tables to be defined within a single SWF file.

The data in this tag begins with the JPEG SOI marker 0xFF, 0xD8 and ends with the EOI
marker 0xFF, 0xD9.

The minimum file format version is SWF 2.

DefineBits

Field Type Comment

Header RECORDHEADER Tag type = 6

CharacterID UI16 ID for this character

JPEGData UI8[image data size] JPEG compressed image

JPEGTables

Field Type Comment

Header RECORDHEADER Tag type = 8

JPEGData UI8[encoding data size] JPEG encoding table

DefineBitsJPEG2

Field Type Comment

Header RECORDHEADER Tag type = 21

CharacterID UI16 ID for this character

JPEGData UI8[data size] JPEG encoding table and
compressed image
110 Chapter 9: Bitmaps

DefineBitsJPEG3

Defines a bitmap character with JPEG compression. This tag extends DefineBitsJPEG2, adding
alpha channel (transparency) data. Transparency is not a standard feature in JPEG images, so the
alpha channel information is encoded separately from the JPEG data, and compressed using the
ZLIB standard for compression. The data format used by the ZLIB library is described by
Request for Comments (RFCs) documents 1950 to 1952.

The data in this tag begins with the JPEG SOI marker 0xFF, 0xD8 and ends with the EOI
marker 0xFF, 0xD9.

The minimum file format version is SWF 3.

DefineBitsLossless

Defines a lossless bitmap character that contains RGB bitmap data compressed with ZLIB. The
data format used by the ZLIB library is described by Request for Comments (RFCs) documents
1950 to 1952.

Two kinds of bitmaps are supported. Colormapped images define a colormap of up to 256 colors,
each represented by a 24-bit RGB value, and then use 8-bit pixel values to index into the
colormap. Direct images store actual pixel color values using 15 bits (32,768 colors) or 24 bits
(about 17 million colors).

DefineBitsJPEG3

Field Type Comment

Header RECORDHEADER Tag type = 35.

CharacterID UI16 ID for this character.

AlphaDataOffset UI32 Count of bytes in JPEGData.

JPEGData UI8[data size] JPEG encoding table and
compressed image.

BitmapAlphaData UI8[alpha data size] ZLIB compressed array of
alpha data. One byte per pixel.
Total size after decompression
must equal (width * height) of
JPEG image.
DefineBitsLossless 111

The minimum file format version is SWF 2.

The COLORMAPDATA and BITMAPDATA structures contain image data. These structures
are each compressed as a single block of data. Their layouts prior to compression are shown below.
Note: Row widths in the pixel data fields of these structures must be rounded up to the next 32-bit
word boundary. For example, an 8-bit image that is 253 pixels wide must be padded out to 256 bytes
per line. To determine the appropriate padding, make sure to take into account the actual size of the
individual pixel structures; 15-bit pixels occupy 2 bytes and 24-bit pixels occupy 4 bytes (see PIX15
and PIX24).

DefineBitsLossless

Field Type Comment

Header RECORDHEADER Tag type = 20

CharacterID UI16 ID for this character

BitmapFormat UI8 Format of compressed data
3 = 8-bit colormapped image
4 = 15-bit RGB image
5 = 24-bit RGB image

BitmapWidth UI16 Width of bitmap image

BitmapHeight UI16 Height of bitmap image

BitmapColorTableSize If BitmapFormat = 3 UI8
Otherwise absent

This value is one less than the
actual number of colors in the
color table, allowing for up to
256 colors.

ZlibBitmapData If BitmapFormat = 3
COLORMAPDATA
If BitmapFormat = 4 or 5
BITMAPDATA

ZLIB compressed bitmap data

COLORMAPDATA

Field Type Comment

ColorTableRGB RGB[color table size] Defines the mapping from color
indices to RGB values. Number
of RGB values is
BitmapColorTableSize + 1.

ColormapPixelData UI8[image data size] Array of color indices. Number
of entries is BitmapWidth *
BitmapHeight, subject to
padding (see Note preceding
this table).
112 Chapter 9: Bitmaps

DefineBitsLossless2

DefineBitsLossless2 extends DefineBitsLossless with support for transparency (alpha values). The
colormap colors in colormapped images are defined using RGBA values, and direct images store
32-bit RGBA colors for each pixel. The intermediate 15-bit color depth is not available in
DefineBitsLossless2.

BITMAPDATA

Field Type Comment

BitmapPixelData If BitmapFormat = 4
PIX15[image data size]
If BitmapFormat = 5
PIX24[image data size]

Array of pixel colors. Number of
entries is BitmapWidth *
BitmapHeight, subject to
padding (see Note above).

PIX15

Field Type Comment

Pix15Reserved UB[1] Always 0

Pix15Red UB[5] Red value

Pix15Green UB[5] Green value

Pix15Blue UB[5] Blue value

PIX24

Field Type Comment

Pix24Reserved UI8 Always 0

Pix24Red UI8 Red value

Pix24Green UI8 Green value

Pix24Blue UI8 Blue value
DefineBitsLossless2 113

The minimum file format version is SWF 3.

The COLORMAPDATA and BITMAPDATA structures contain image data. These structures
are each compressed as a single block of data. Their layouts prior to compression are shown below.
Note: Row widths in the pixel data field of ALPHACOLORMAPDATA must be rounded up to the
next 32-bit word boundary. For example, an 8-bit image that is 253 pixels wide must be padded out
to 256 bytes per line. Row widths in ALPHABITMAPDATA are always 32-bit aligned because the
RGBA structure is 4 bytes.

DefineBitsLossless2

Field Type Comment

Header RECORDHEADER Tag type = 36

CharacterID UI16 ID for this character

BitmapFormat UI8 Format of compressed data
3 = 8-bit colormapped image
5 = 32-bit RGBA image

BitmapWidth UI16 Width of bitmap image

BitmapHeight UI16 Height of bitmap image

BitmapColorTableSize If BitmapFormat = 3 UI8
Otherwise absent

This value is one less than the actual
number of colors in the color table,
allowing for up to 256 colors.

ZlibBitmapData If BitmapFormat = 3
ALPHACOLORMAPDATA
If BitmapFormat = 4 or 5
ALPHABITMAPDATA

ZLIB compressed bitmap data

ALPHACOLORMAPDATA

Field Type Comment

ColorTableRGB RGBA[color table size] Defines the mapping from color indices
to RGBA values. Number of RGBA
values is BitmapColorTableSize + 1.

ColormapPixelData UI8[image data size] Array of color indices. Number of entries
is BitmapWidth * BitmapHeight,
subject to padding (see Note preceding
this table).

ALPHABITMAPDATA

Field Type Comment

BitmapPixelData RGBA[image data size] Array of pixel colors. Number of entries
is BitmapWidth * BitmapHeight.
114 Chapter 9: Bitmaps

CHAPTER 10
Shape Morphing
Shape morphing is the metamorphosis of one shape into another over time. Macromedia Flash
(SWF) file format supports a flexible morphing model, which allows a number of shape attributes
to vary during the morph. SWF file format defines only the start and end states of the morph.
Macromedia Flash Player is responsible for interpolating between the endpoints and generating
the ‘in-between’ states.

The following shape attributes can be varied during the morph:

• The position of each edge in the shape.
• The color and thickness of the outline.
• The fill color of the shape (if filled with a color).
• The bitmap transform (if filled with a bitmap).
• The gradient transform (if filled with a gradient).
• The color and position of each point in the gradient (if filled with a gradient).

The following restrictions apply to morphing:

• The start and end shapes must have the same number of edges.
• The start and end shapes must have the same type of fill (that is, solid, gradient or bitmap).
• The style change records must be the same for the start and end shapes.
• If filled with a bitmap, both shapes must be filled with the same bitmap.
• If filled with a gradient, both gradients must have the same number of color points.

The following illustration shows a morph from a blue rectangle to a red quadrilateral over five
frames. The green outlines represent the ‘in-between’ shapes of the morph sequence. Both shapes
have the same number of points, and the same type of fill, namely a solid fill. Besides changing
shape, the shape also gradually changes color from blue to red.
115

There are two tags involved in defining and playing a morph sequence:

• DefineMorphShape
• PlaceObject2

DefineMorphShape defines the start and end states of the morph. A morph object does not use
previously defined shapes; it is considered a special type of shape with only one character ID.
DefineMorphShape contains a list of edges for both the start and end shapes. It also defines the
fill and line styles, as they are at the start and end of the morph sequence.

The PlaceObject 2 tag displays the morph object at some point in time during the morph
sequence. The ratio field controls how far the morph has progressed. A ratio of zero produces a
shape identical to the start condition. A ratio of 65535 produces a shape identical to the end
condition.

DefineMorphShape

The DefineMorphShape tag defines the start and end states of a morph sequence. A morph
object should be displayed with the PlaceObject2 tag, where the ratio field specifies how far the
morph has progressed.

The minimum file format version is SWF 3.

StartBounds This defines the bounding-box of the shape at the start of the morph.

EndBounds This defines the bounding-box at the end of the morph.

DefineMorphShape

Field Type Comment

Header RECORDHEADER Tag type = 46

Character ID UI16 ID for this character

StartBounds RECT Bounds of the start shape

EndBounds RECT Bounds of the end shape

Offset UI32 Indicates offset to EndEdges

MorphFillStyles MorphFillStyles Fill style information is stored in the same manner as
for a standard shape; however, each fill consists of
interleaved information based on a single style type
to accommodate morphing.

MorphLineStyles MORPHLINESTYLES Line style information is stored in the same manner
as for a standard shape; however, each line consists
of interleaved information based on a single style
type to accommodate morphing.

StartEdges SHAPE Contains the set of edges and the style bits that
indicate style changes (for example, MoveTo,
FillStyle, and LineStyle). Number of edges must
equal the number of edges in EndEdges.

EndEdges SHAPE Contains only the set of edges, with no style
information. Number of edges must equal the
number of edges in StartEdges.
116 Chapter 10: Shape Morphing

MorphFillStyles This contains an array of interleaved fill styles for the start and end shapes.
The fill style for the start shape is followed the corresponding fill style for the end shape.

MorphLineStyles This contains an array of interleaved line styles.

StartEdges This array specifies the edges for the start shape, and the style change records for
both shapes. Because the StyleChangeRecords must be the same for the start and end shapes, they
are defined only in the StartEdges array.

EndEdges This array specifies the edges for the end shape, and contains no style change
records. The number of edges specified in StartEdges must equal the number of edges in
EndEdges.
Note: Strictly speaking, MoveTo records fall into the category of StyleChangeRecords; however,
they should be included in both the StartEdges and EndEdges arrays.

It is possible for an edge to change type over the course of a morph sequence. A straight edge can
become a curved edge and vice versa. In this case, think of both edges as curved. A straight edge
can be easily represented as a curve, by placing the off-curve (control) point at the mid-point of
the straight edge, and the on-curve (anchor) point at the end of the straight edge. The calculation
is as follows:
CurveControlDelta.x = StraightDelta.x / 2;
CurveControlDelta.y = StraightDelta.y / 2;
CurveAnchorDelta.x = StraightDelta.x / 2;
CurveAnchorDelta.y = StraightDelta.y / 2;

MorphFillStyles

A morph fill style array enumerates a number of fill styles. The format of a fill style array is
described in the following table:

MORPHFILLSTYLE

Field Type Comment

FillStyleCount Count = UI8 Count of fill styles

FillStyleCountExtended If Count = 0xFF
UI16

Extended count of fill styles.

FillStyles MORPHFILLSTYLE[count] Array of fill styles
MorphFillStyles 117

A fill style represents how a closed shape is filled in. The format of a fill style value within the file
is described in the following table:

Morph Gradient Values

Morph Gradient Values control gradient information for a fill style.

MORPHGRADIENT

The format of gradient information is described in the following table:

Field Type Comment

FillStyleType UI8 Type of fill style
0x00 = solid fill
0x10 = linear gradient fill
0x12 = radial gradient fill
0x40 = repeating bitmap
0x41 = clipped bitmap fill
0x42 = non-smoothed
repeating bitmap
0x43 = non-smoothed clipped
bitmap

StartColor If type = 0x00 RGBA Solid fill color with transparency
information for start shape

EndColor If type = 0x00 RGBA Solid fill color with transparency
information for end shape

StartGradientMatrix If type = 0x10 or 0x12 MATRIX Matrix for gradient fill for start
shape

EndGradientMatrix If type = 0x10 or 0x12 MATRIX Matrix for gradient fill for end
shape

Gradient If type = 0x10 or 0x12
MORPHGRADIENT

Gradient fill

BitmapId If type = 0x40, 0x41, 0x42 or
0x43 UI16

ID of bitmap character for fill

StartBitmapMatrix If type = 0x40, 0x41, 0x42 or
0x43 MATRIX

Matrix for bitmap fill for start
shape

EndBitmapMatrix If type = 0x40, 0x41, 0x42 or
0x43 MATRIX

Matrix for bitmap fill for end
shape

MORPHGRADIENT

Field Type Comment

NumGradients UI8 1 to 8

GradientRecords MORPHGRADRECORD
[NumGradients]

Gradient records (see below)
118 Chapter 10: Shape Morphing

MORPHGRADRECORD

The gradient record format is described in the following table:

Morph Line Styles

A morph line style array enumerates a number of fill styles.

MORPHLINESTYLES

The format of a line style array is described in the following table:

A line style represents a width and color of a line. DefineMorphShape supports only solid line
styles.

MORPHLINESTYLE

The format of a line style value within the file is described in the following table.

MORPHGRADRECORD

Field Type Comment

StartRatio UI8 Ratio value for start shape

StartColor RGBA Color of gradient for start shape

EndRatio UI8 Ratio value for end shape

EndColor RGBA Color of gradient for end shape

MORPHLINESTYLES

Field Type Comment

LineStyleCount UI8 Count of line styles

LineStyleCountExtended If count = 0xFF
UI16

Extended count of line styles

LineStyles MORPHLINESTYLE[count] Array of line styles

MORPHLINESTYLE

Field Type Comment

StartWidth UI16 Width of line in start shape in
twips

EndWidth UI16 Width of line in end shape in
twips

StartColor RGBA Color value including alpha
channel information for start
shape

EndColor RGBA Color value including alpha
channel information for end
shape
Morph Line Styles 119

120 Chapter 10: Shape Morphing

CHAPTER 11
Fonts and Text
Macromedia Flash (SWF) file format supports a variety of text-drawing primitives. In SWF files
of version 6 or later, all text is represented using Unicode encodings, eliminating dependencies on
playback locale.

Glyph Text and Device Text

SWF file format supports two kinds of text: glyph text and device text. Glyph text works by
embedding character shapes in the SWF file, while device text uses the text rendering capabilities
of the playback platform.

Glyph text is drawn with antialiasing, and looks identical on all playback platforms. Glyph text
requires larger SWF files than device text, especially for movies that will use many different
characters from a large character set.

Device text is not anti-aliased, and its appearance can vary depending on the playback platform.
When a font specified for device text is unavailable at playback time, glyph text is used as a
fallback. Fonts for device text can be specified in two ways: directly, as a font name that will be
sought verbatim on the playback platform; or indirectly, using one of a small number of special
font names that are mapped to highly available fonts that differ in name from platform to
platform, but are chosen to be as similar in appearance as possible across platforms.

Glyph text characters are defined using the DefineFont or DefineFont2 tag. Device text fonts are
defined using the DefineFont and DefineFontInfo tags together, or the DefineFont2 tag.
DefineFont2 tags for device text fonts do not need to include any character glyphs if they will
only be used for dynamic text (see next section), although it is a good idea to include them if there
is any doubt about the specified font being available at playback time on any platform. It is
possible to use a given DefineFont or DefineFont2 tag as a glyph font for certain text blocks, and
as a device font for others, as long as both glyphs and character codes are provided.

Static Text and Dynamic Text

Text can be defined as static text or, in SWF 4 or later, dynamic text. Dynamic text can be changed
programmatically at runtime, and, optionally, can be made editable for Macromedia Flash Player
users as well.
121

Dynamic text can emulate almost all features of static text; exact positioning of individual
characters is the only advantage of static text, aside from implementation effort and version
compatibility. Dynamic text also has many formatting capabilities that static text does not have.
These rich formatting capabilities are expressed as a subset of HTML text-markup tags.

Static text is defined using the DefineText tag. Dynamic text is defined using the DefineEditText
tag. Both of these tags make reference to DefineFont or DefineFont2 tags to obtain their
character sources. DefineEditText tags require DefineFont2 tags rather than DefineFont tags;
DefineText tags may use either DefineFont or DefineFont2 tags.

The DefineEditText tag provides a flag that indicates whether to use glyph text or device text.
However, the DefineText tag does not. This means that, for static text, SWF file format provides
no means to indicate whether to use glyph text or device text. This situation is resolved by
runtime flags. Normally, all static text is rendered as glyph text. When a Flash Player plug-in is
embedded in an HTML page, an HTML tag option called devicefont will cause Flash Player to
render all static text as device text, if possible; as usual, glyph text is used as a fallback. The ability
of the DefineEditText tag to specify glyph text or device text is another reason to consider
dynamic text superior to static text.

Glyph Text

Glyph Definitions

Glyphs are defined once in a standard coordinate space called the EM square. The same set of
glyphs are used for every point size of a given font. To render a glyph at different point sizes,
Flash Player scales the glyph from EM coordinates to point-size coordinates.

Glyph fonts do not include any hinting information for improving the quality of small font sizes.
However, antialiasing dramatically improves the legibility of down-scaled text. Glyph text
remains legible down to about 12 points (viewed at 100%). Below this size, glyph text may
appear fuzzy and blurred.

TrueType fonts can be readily converted to SWF glyphs. A simple algorithm can replace the
Quadratic B-splines (used by TrueType) with Quadratic Bezier curves (used by SWF).
122 Chapter 11: Fonts and Text

Example:

To the left is the glyph for the TrueType letter 'b' of Monotype Arial. It is made up of curved and
straight edges. Squares indicate on-curve points, and crosses indicate off-curve points. The black
circle is the reference point for the glyph. The blue outline indicates the bounding box of
the glyph.

The EM Square

The EM square is an imaginary square that is used to size and align glyphs. The EM square is
generally large enough to completely contain all glyphs, including accented glyphs. It includes
the font’s ascent, descent, and some extra spacing to prevent lines of text from colliding.

SWF glyphs are always defined on an EM square of 1024 by 1024 units. Glyphs from other
sources (such as TrueType fonts) may be defined on a different EM square. To use these glyphs in
SWF file format, they should be scaled to fit an EM square of 1024.

Converting TrueType fonts to SWF glyphs

TrueType glyphs are defined using Quadratic B-Splines, which can be easily converted to the
Quadratic Bezier curves used by SWF glyphs.

A TrueType B-spline is composed of one on-curve point, followed by many off-curve points,
followed by another on-curve point. The mid-point between any two off-curve points is
guaranteed to be on the curve. A SWF Bezier curve is composed of one on-curve point, followed
by one off-curve point, followed by another on-curve point.

The conversion from TrueType to SWF curves involves inserting a new on-curve point at the
mid-point of two successive off-curve points.

Example:

Below is a four point B-Spline. P0 and P3 are on-curve points. P1 and P2 are successive off-
curve points.

This curve can be represented as two Quadratic Bezier curves by inserting a new point M, at the
mid-point of P1,P2. The result is two Quadratic Bezier curves; P0,P1,M and M,P2,P3.
Glyph Text 123

The complete procedure for converting TrueType glyphs to SWF glyphs is as follows:

1 Negate the y-coordinate. (In TrueType the y-axis points up, in SWF the y-axis points down)
2 Scale the x and y co-ordinates from the EM square of the TrueType font, to the EM square of

the SWF glyph (always 1024)
3 Insert an on-curve (anchor) point at the mid-point of each pair of off-curve points.

Kerning and Advance Values

Kerning defines the horizontal distance between two glyphs. Some font systems store kerning
information along with each font definition. SWF file format, in contrast, stores kerning
information with every glyph instance (every character in a glyph text block). This is referred to as
an advance value.

In the example to the right, the A glyph overlaps the V glyph. In this case the advance is narrower
than the width of the A glyph.

DefineFont and DefineText

Of the four text types supported in SWF file format (static glyph, static device, dynamic glyph,
and dynamic device), the most complex is static glyph text. The other types use simpler variations
on the rules used for defining static glyph text.

Static glyph text is defined using two tags:

• The DefineFont tag defines a set of glyphs.
• The DefineText tag defines the text string that is displayed in the font.

The DefineFont tag defines all the glyphs used by subsequent DefineText tags. DefineFont
includes an array of SHAPERECORDs, which describe the outlines of the glyphs. These shape
records are the same records used by DefineShape to define non-text shapes. To keep file size to a
minimum, only the glyphs actually used are included in the DefineFont tag.

The DefineText tag stores the actual text string(s) to be displayed, represented as a series of glyph
indices. It also includes the bounding box of the text object, a transformation matrix, and style
attributes such as color and size.

DefineText contains an array of TEXTRECORDs. A TEXTRECORD selects the current font,
color, and point size, as well as the x and y position of the next character in the text. These styles
apply to all characters that follow, until another TEXTRECORD changes the styles. A
TEXTRECORD also contains an array of indices into the glyph table of the current font.
Characters are not referred to by their character codes, as in traditional programming, but rather
by an index into the glyph table. The glyph data also includes the advance value for each character
in the text string.
Note: A DefineFont tag must always come before any DefineText tags that refer to it.
124 Chapter 11: Fonts and Text

Static Glyph Text Example

Consider the example of displaying the static glyph text “bob” in the Arial font, with a point size
of 24.

First, define the glyphs with a DefineFont tag. The glyph table, of type SHAPE, has two
SHAPERECORDs. At index 0 is the shape of a lowercase ‘b’ (see diagram). At index 1 is the
shape of a lowercase ‘o’. (The second ‘b’ in bob is a duplicate, and is not required). DefineFont
also includes a unique ID so it can be selected by the DefineText tag.

Next define the text itself with a DefineText tag. The TEXTRECORD sets the position of the
first character, selects the Arial font (using the font’s character ID), and sets the point size to 24,
so the font is scaled to the correct size. (Remember that glyphs are defined in EM coordinates—
the actual point size is part of the DefineText tag). It also contains an array of GLYPHENTRYS.
Each glyph entry contains an index into the font’s shape array. In this example, the first glyph
entry has index 0 (which corresponds to the ‘b’ shape), the second entry has index 1 (the ‘o’), and
the third entry has index 0 (‘b’ again). Each GLYPHENTRY also includes an advance value for
accurately positioning the glyph.

The following diagram illustrates how the DefineText tag interacts with the DefineFont tag:

Font Tags

DefineFont

The DefineFont tag defines the shape outlines of each glyph used in a particular font. Only the
glyphs that are used by subsequent DefineText tags are actually defined.

DefineFont tags cannot be used for dynamic text. Dynamic text requires the DefineFont2 tag.

Glyph index to 'b'

Glyph index to 'o'

Glyph index to 'b'

DefineText
TEXTRECORD

Glyph 'b'

Glyph 'o'

DefineFont
SHAPE Array:
Font Tags 125

The minimum file format version is SWF 1.

The FontId uniquely identifies the font. It can be used by subsequent DefineText tags to select
the font. Like all SWF character IDs, font IDs must be unique among all character IDs in a
SWF file.

If you provide a DefineFontInfo tag to go along with a DefineFont tag, be aware that the order of
the glyphs in the DefineFont tag must match the order of the character codes in the
DefineFontInfo tag, which must be sorted by code point order.

The OffsetTable and GlyphShapeTable are used together. These tables have the same number of
entries, and there is a one-to-one ordering match between the order of the offsets and the order of
the shapes. The OffsetTable points to locations in the GlyphShapeTable. Each offset entry stores
the difference (in bytes) between the start of the offset table and the location of the corresponding
shape. Because the GlyphShapeTable immediately follows the OffsetTable, the number of entries
in each table (the number of glyphs in the font) can be inferred by dividing the first entry in the
OffsetTable by two.

The first STYLECHANGERECORD of each SHAPE in the GlyphShapeTable does not use the
LineStyle and LineStyles fields. In addition, the first STYLECHANGERECORD of each shape
must have both fields StateFillStyle0 and FillStyle0 set to 1.

DefineFontInfo

The DefineFontInfo tag defines a mapping from a glyph font (defined with DefineFont) to a
device font. It provides a font name and style to pass to the playback platform’s text engine, and a
table of character codes that identifies the character represented by each glyph in the
corresponding DefineFont tag, allowing the glyph indices of a DefineText tag to be converted to
character strings.

The presence of a DefineFontInfo tag does not force a glyph font to become a device font; it
merely makes the option available. The actual choice between glyph and device usage is made
according to the value of devicefont (see the introduction) or the value of UseOutlines in a
DefineEditText tag. If a device font is unavailable on a playback platform, Flash Player will fall
back to glyph text.

DefineFont

Field Type Comment

Header RECORDHEADER Tag type = 10

FontID UI16 ID for this font character

OffsetTable UI16[nGlyphs] Array of shape offsets

GlyphShapeTable SHAPE[nGlyphs] Array of shapes
126 Chapter 11: Fonts and Text

The minimum file format version is SWF 1.

The entries in the CodeTable must be sorted in ascending order by code point, by the value they
provide. The order of the entries in the CodeTable must also match the order of the glyphs in the
DefineFont tag to which this DefineFontInfo tag applies. This places a requirement on the
ordering of glyphs in the corresponding DefineFont tag.

SWF files of version 6 or later require Unicode text encoding. One aspect of this requirement is
that all character code tables are specified using UCS-2. This encoding uses a fixed 2 bytes for
each character. This means that when a DefineFontInfo tag appears in a SWF file of version 6 or
later, FontFlagsWideCodes must be set; FontFlagsShiftJIS and FontFlagsANSI must be cleared;
and CodeTable must consist of UI16 entries (as always, in little-endian byte order) encoded in
UCS-2.

DefineFontInfo

Field Type Comment

Header RECORDHEADER Tag type = 13

FontID UI16 Font ID this information is for

FontNameLen UI8 Length of font name

FontName UI8[FontNameLen] Name of the font (see below)

FontFlagsReserved UB[2] Reserved bit fields

FontFlagsSmallText UB[1] SWF 7 or later:
Font is small. Character glyphs
are aligned on pixel boundaries
for dynamic and input text.

FontFlagsShiftJIS UB[1] ShiftJIS character codes

FontFlagsANSI UB[1] ANSI character codes

FontFlagsItalic UB[1] Font is italic

FontFlagsBold UB[1] Font is bold

FontFlagsWideCodes UB[1] if 1 codeTable is UI16s else UI8s

CodeTable If FontFlagsWideCodes
UI16[nGlyphs]
Otherwise UI8[nGlyphs]

Glyph to code table, sorted in
ascending order
Font Tags 127

Another Unicode requirement that applies to SWF files of version 6 or later is that font names
must always be encoded using UTF-8. In SWF files of version 5 or earlier, font names are
encoded in a platform-specific way, in the codepage of the system on which they were authored.
The playback platform will interpret them using its current codepage, with potentially
inconsistent results. If the playback platform is an ANSI system, font names will be interpreted as
ANSI strings. If the playback platform is a Japanese shift-JIS system, font names will be
interpreted as shift-JIS strings. Many other values for the playback platform’s codepage, which
governs this decision, are possible. This playback locale dependency is undesirable, which is why
SWF 6 moved toward a standard encoding for font names. Note that font name strings in the
DefineFontInfo tag are not null-terminated; instead their length is specified by the
FontNameLen field. FontNameLen specifies the number of bytes in FontName, which is not
necessarily equal to the number of characters, since some encodings may use more than one byte
per character.

Font names are normally used verbatim, passed directly to the playback platform’s font system in
order to locate a font. However, there are several special indirect font names that are mapped to
different actual font names depending on the playback platform. These indirect mappings are
hard-coded into each platform-specific port of Flash Player, and the fonts for each platform are
chosen from among system default fonts or other fonts that are very likely to be available. As a
secondary consideration, the indirect mappings are chosen so as to maximize the similarity of
indirect fonts across platforms.

The following indirect font names are supported:

Western Indirect Fonts

_sans

Hello world

_serif

Hello world

_typewriter

Hello world

Japanese Indirect Fonts

FontName:

English Name: Gothic

UTF-8 Byte String (hex): 5F E3 82 B4 E3 82 B7 E3 83 83 E3 82 AF

Example Appearance

FontName:

English Name: Tohaba(Gothic Mono)
128 Chapter 11: Fonts and Text

UTF-8 Byte String (hex): 5F E7 AD 89 E5 B9 85

Example Appearance:

FontName:

English Name: Mincho

UTF-8 Byte String (hex): 5F E6 98 8E E6 9C 9D

Example Appearance:

DefineFontInfo2

When generating SWF 6 or later, it is recommended that you use the new DefineFontInfo2 tag
rather than DefineFontInfo. DefineFontInfo2 is identical to DefineFontInfo, except that it adds
a field for a language code. If you use the older DefineFontInfo, the language code will be assumed
to be zero, which results in behavior that is dependent on the locale in which Flash Player
is running.

The minimum file format version is SWF 6.

DefineFontInfo2

Field Type Comment

Header RECORDHEADER Tag type = 62

FontID UI16 Font ID this information is for

FontNameLen UI8 Length of font name

FontName UI8[FontNameLen] Name of the font

FontFlagsReserved UB[2] Reserved bit fields

FontFlagsSmallText UB[1] SWF 7 or later:
Font is small. Character glyphs
are aligned on pixel boundaries
for dynamic and input text.

FontFlagsShiftJIS UB[1] Always 0

FontFlagsANSI UB[1] Always 0

FontFlagsItalic UB[1] Font is italic

FontFlagsBold UB[1] Font is bold

FontFlagsWideCodes UB[1] Always 1

LanguageCode LANGCODE Language ID

CodeTable UI16[nGlyphs] Glyph to code table in UCS-2,
sorted in ascending order
Font Tags 129

DefineFont2

The DefineFont2 tag extends the functionality of DefineFont. Enhancements include
the following:

• 32-bit entries in the OffsetTable, for fonts with more than 64K glyphs.
• Mapping to device fonts, by incorporating all the functionality of DefineFontInfo.
• Font metrics for improved layout of dynamic glyph text.

DefineFont2 tags are the only font definitions that can be used for dynamic text.

The minimum file format version is SWF 3.

DefineFont2

Field Type Comment

Header RECORDHEADER Tag type = 48

FontID UI16 ID for this font character

FontFlagsHasLayout UB[1] Has font metrics/layout
information

FontFlagsShiftJIS UB[1] ShiftJIS encoding

FontFlagsSmallText UB[1] SWF 7 or later:
Font is small. Character glyphs
are aligned on pixel boundaries
for dynamic and input text.

FontFlagsANSI UB[1] ANSI encoding

FontFlagsWideOffsets UB[1] If 1, uses 32 bit offsets

FontFlagsWideCodes UB[1] If 1, font uses 16-bit codes,
otherwise font uses 8 bit codes

FontFlagsItalic UB[1] Italic Font

FontFlagsBold UB[1] Bold Font

LanguageCode LANGCODE SWF 5 or earlier:
always 0
SWF 6 or later:
language code

FontNameLen UI8 Length of name

FontName UI8[FontNameLen] Name of font (see
DefineFontInfo)

NumGlyphs UI16 Count of glyphs in font
May be zero for device fonts

OffsetTable If FontFlagsWideOffsets
UI32[NumGlyphs]
Otherwise UI16[NumGlyphs]

Same as in DefineFont
130 Chapter 11: Fonts and Text

In SWF files of version 6 or later, DefineFont2 has the same Unicode requirements as
DefineFontInfo.

Similarly to the DefineFontInfo tag, the CodeTable (and thus also the OffsetTable,
GlyphShapeTable, and FontAdvanceTable) must be sorted in code point order.

If a DefineFont2 tag will be used only for dynamic device text, and no glyph-rendering fallback is
desired, set NumGlyphs to zero, and omit all tables having NumGlyphs entries. This will
substantially reduce the size of the DefineFont2 tag. DefineFont2 tags without glyphs cannot
support static text, which uses glyph indices to select characters, and also cannot support glyph
text, which requires glyph shape definitions.

Layout information (ascent, descent, leading, advance table, bounds table, kerning table) is useful
only for dynamic glyph text. This information takes the place of the per-character placement
information that is used in static glyph text. The layout information in the DefineFont2 tag is
fairly standard font-metrics information that can typically be extracted directly from a standard
font definition, such as a TrueType font.
Note: Leading is a vertical line-spacing metric. It is the distance (in EM-square coordinates) between
the bottom of the descender of one line and the top of the ascender of the next line.

CodeTableOffset If FontFlagsWideOffsets UI32
Otherwise UI16

Byte count from start of
OffsetTable to start of
CodeTable

GlyphShapeTable SHAPE[NumGlyphs] Same as in DefineFont

CodeTable If FontFlagsWideCodes
UI16[NumGlyphs]
Otherwise UI8[NumGlyphs]

Sorted in ascending order
Always UCS-2 in SWF 6 or
later

FontAscent If FontFlagsHasLayout SI16 Font ascender height

FontDescent If FontFlagsHasLayout SI16 Font descender height

FontLeading If FontFlagsHasLayout SI16 Font leading height (see below)

FontAdvanceTable If FontFlagsHasLayout
SI16[NumGlyphs]

Advance value to be used for
each glyph in dynamic glyph text

FontBoundsTable If FontFlagsHasLayout
RECT[NumGlyphs]

Not used in Flash Player
through version 7 (but must be
present)

KerningCount If FontFlagsHasLayout UI16 Not used in Flash Player
through version 7 (always set to
0 to save space)

FontKerningTable If FontFlagsHasLayout
KERNINGRECORD [KerningCount]

Not used in Flash Player
through version 7 (omit with
KerningCount of 0)

DefineFont2

Field Type Comment
Font Tags 131

As with DefineFont, in DefineFont2 the first STYLECHANGERECORD of each SHAPE in the
GlyphShapeTable does not use the LineStyle and LineStyles fields. In addition, the first
STYLECHANGERECORD of each shape must have both fields StateFillStyle0 and FillStyle0 set
to 1.

The DefineFont2 tag reserves space for a font bounds table and kerning table. This information
is not used in Flash Player through version 7. However, this information must be present in order
to constitute a well-formed DefineFont2 tag. Supply minimal (low-bit) RECTs for
FontBoundsTable, and always set KerningCount to zero, which allows FontKerningTable to
be omitted.

Kerning Record

A Kerning Record defines the distance between two glyphs in EM square coordinates. Certain
pairs of glyphs appear more aesthetically pleasing if they are moved closer together, or farther
apart. The FontKerningCode1 and FontKerningCode2 fields are the character codes for the left
and right characters. The FontKerningAdjustment field is a signed integer that defines a value to
be added to the advance value of the left character.

KERNINGRECORD

Field Type Comment

FontKerningCode1 If FontFlagsWideCodes UI16
Otherwise UI8

Character code of the left
character

FontKerningCode2 If FontFlagsWideCodes UI16
Otherwise UI8

Character code of the right
character

FontKerningAdjustment SI16 Adjustment relative to left
character’s advance value
132 Chapter 11: Fonts and Text

Static Text Tags

DefineText

The DefineText tag defines a block of static text. It describes the font, size, color, and exact
position of every character in the text object.

The minimum file format version is SWF 1.

The TextBounds field is the rectangle that completely encloses all the characters in this text block.

The GlyphBits and AdvanceBits fields define the number of bits used for the GlyphIndex and
GlyphAdvance fields, respectively, in each GLYPHENTRY record.

Text Records

A TEXTRECORD sets text styles for subsequent characters. It can be used to select a font,
change the text color, change the point size, insert a line break, or set the x and y position of the
next character in the text. The new text styles apply until another TEXTRECORD changes
the styles.

DefineText

Field Type Comment

Header RECORDHEADER Tag type = 11

CharacterID UI16 ID for this text character

TextBounds RECT Bounds of the text

TextMatrix MATRIX Transformation matrix for the
text

GlyphBits UI8 Bits in each glyph index

AdvanceBits UI8 Bits in each advance value

TextRecords TEXTRECORD[zero or more] Text records

EndOfRecordsFlag UI8 Must be 0
Static Text Tags 133

The TEXTRECORD also defines the actual characters in a text object. Characters are referred to
by an index into the current font’s glyph table, not by a character code. Each TEXTRECORD
contains a group of characters that all share the same text style, and are on the same line of text.

The FontID field is used to select a previously defined font. This ID uniquely identifies a
DefineFont or DefineFont2 tag from earlier in the SWF file.

The TextHeight field defines the height of the font in twips. For example, a pixel height of 50 is
equivalent to a TextHeight of 1000. (50 * 20 = 1000).

The XOffset field defines the offset from the left of the TextBounds rectangle to the reference
point of the glyph (the point within the EM square from which the first curve segment departs).
Typically, the reference point is on the baseline, near the left side of the glyph (see the Glyph Text
example). The XOffset is generally used to create indented text or non-left-justified text. If there
is no XOffset specified, the offset is assumed to be zero.

The YOffset field defines the offset from the top of the TextBounds rectangle to the reference
point of the glyph. The TextYOffset is generally used to insert line breaks, moving the text
position to the start of a new line.

The GlyphCount field defines the number of characters in this string, and the size of the
GLYPHENTRY table.

TEXTRECORD

Field Type Comment

TextRecordType UB[1] Always 1

StyleFlagsReserved UB[3] Always 0

StyleFlagsHasFont UB[1] 1 if text font specified

StyleFlagsHasColor UB[1] 1 if text color specified

StyleFlagsHasYOffset UB[1] 1 if y offset specified

StyleFlagsHasXOffset UB[1] 1 if x offset specified

FontID If StyleFlagsHasFont UI16 Font ID for following text

TextColor If StyleFlagsHasColor RGB
If this record is part of a
DefineText2 tag then RGBA

Font color for following text

XOffset If StyleFlagsHasXOffset SI16 x offset for following text

YOffset If StyleFlagsHasYOffset SI16 y offset for following text

TextHeight If hasFont UI16 Font height for following text

GlyphCount UI8 Number of glyphs in record

GlyphEntries GLYPHENTRY[GlyphCount] Glyph entry (see below).
134 Chapter 11: Fonts and Text

Glyph Entry

The GLYPHENTRY structure describes a single character in a line of text. It is composed of an
index into the current font’s glyph table, and an advance value. The advance value is the
horizontal distance between the reference point of this character and the reference point of the
following character.

DefineText2

The DefineText2 tag is almost identical to the DefineText tag. The only difference is that Type 1
Text Records contained within a DefineText2 tag use an RGBA value (rather than an RGB value)
to define TextColor. This allows partially or completely transparent characters.

Text defined with DefineText2 is always rendered with glyphs. Device text can never
include transparency.

The minimum file format version is SWF 3.

GLYPHENTRY

Field Type Comment

GlyphIndex UB[GlyphBits] Glyph index into current font

GlyphAdvance SB[AdvanceBits] x advance value for glyph

DefineText2

Field Type Comment

Header RECORDHEADER Tag type = 33

CharacterID UI16 ID for this text character

TextBounds RECT Bounds of the text

TextMatrix MATRIX Transformation matrix

GlyphBits UI8 Bits in each glyph index

AdvanceBits UI8 Bits in each advance value

TextRecords TEXTRECORD[zero or more] Text records

EndOfRecordsFlag UI8 Must be 0
Static Text Tags 135

Dynamic Text Tags

DefineEditText

The DefineEditText tag defines a dynamic text object, or text field.

A text field is associated with an ActionScript variable name where the contents of the text field
are stored. The SWF movie can read and write the contents of the variable, which is always kept
in sync with the text being displayed. If the ReadOnly flag is not set, users may change the value
of a text field interactively.

Fonts used by DefineEditText must be defined using DefineFont2, not DefineFont.

The minimum file format version is SWF 4.

DefineEditText

Field Type Comment

Header RECORDHEADER Tag type = 37

CharacterID UI16 ID for this dynamic text
character

Bounds RECT Rectangle that completely
encloses the text field

HasText UB[1] 0 = text field has no default text
1 = text field initially displays the
string specified by InitialText

WordWrap UB[1] 0 = text will not wrap and will
scroll sideways
1 = text will wrap automatically
when the end of line is reached

Multiline UB[1] 0 = text field is one line only
1 = text field is multi-line and will
scroll automatically

Password UB[1] 0 = characters are displayed as
typed
1 = all characters are displayed
as an asterisk

ReadOnly UB[1] 0 = text editing is enabled
1 = text editing is disabled

HasTextColor UB[1] 0 = use default color
1 = use specified color
(TextColor)

HasMaxLength UB[1] 0 = length of text is unlimited
1 = maximum length of string is
specified by MaxLength

HasFont UB[1] 0 = use default font
1 = use specified font (FontID)
and height (FontHeight)
136 Chapter 11: Fonts and Text

Reserved UB[1] Always 0

AutoSize UB[1] 0 = fixed size
1 = sizes to content (SWF 6 or
later only)

HasLayout UB[1] Layout information provided

NoSelect UB[1] Enables or disables interactive
text selection

Border UB[1] Causes a border to be drawn
around the text field

Reserved UB[1] Always 0

HTML UB[1] 0 = plaintext content
1 = HTML content (see below)

UseOutlines UB[1] 0 = use device font
1 = use glyph font

FontID If HasFont UI16 ID of font to use

FontHeight If HasFont UI16 Height of font in twips

TextColor If HasTextColor RGBA Color of text

MaxLength If HasMaxLength UI16 Text is restricted to this length

Align If HasLayout UI8 0 = Left
1 = Right
2 = Center
3 = Justify

LeftMargin If HasLayout UI16 Left margin in twips

RightMargin If HasLayout UI16 Right margin in twips

Indent If HasLayout UI16 Indent in twips

Leading If HasLayout UI16 Leading in twips (vertical
distance between bottom of
descender of one line and top of
ascender of the next)

VariableName STRING Name of the variable where the
contents of the text field are
stored. May be qualified with
dot syntax or slash syntax for
non-global variables.

InitialText If HasText STRING Text that is initially displayed

DefineEditText

Field Type Comment
Dynamic Text Tags 137

If the HTML flag is set, the contents of InitialText are interpreted as a limited subset of the
HTML tag language, with a few additions not normally present in HTML. The following
tags are supported:

Tag Description

<p> ... </p> Defines a paragraph. The attribute align may be present, with
value left, right, or center.

 Inserts a line break.

<a> ... Defines a hyperlink. The attribute href must be present. The
attribute target is optional, and specifies a window name.

 ... Defines a span of text that uses a given font. The following
attributes are available:
• face, which specifies a font name that must match a font name

supplied in a DefineFont2 tag
• size, which is specified in twips, and may include a leading ‘+’ or

‘-’ for relative sizes
• color, which is specified as a #RRGGBB hex triplet

 ... Defines a span of bold text.

<i> ... </i> Defines a span of italic text.

<u> ... </u> Defines a span of underlined text.

 ... Defines a bulleted paragraph. The tag is not necessary and is
not supported. Numbered lists are not supported.

<textformat> ... </textformat> Defines a span of text with certain formatting options. The
following attributes are available:
• leftmargin, which specifies the left margin in twips
• rightmargin, which specifies the right margin in twips
• indent, which specifies the left indent in twips
• blockindent, which specifies a block indent in twips
• leading, which specifies the leading in twips
• tabstops, which specifies a comma-separated list of tab stops,

each specified in twips

<tab> Inserts a tab character, which advances to the next tab stop as
defined with <textformat>.
138 Chapter 11: Fonts and Text

CHAPTER 12
Sounds
The Macromedia Flash (SWF) file format defines a small and efficient sound model. SWF file
format supports sample rates of 5.5, 11, 22 and 44 kHz in both stereo and mono. Macromedia
Flash Player supports rate conversion and multi-channel mixing of these sounds. The number of
simultaneous channels supported depends on the CPU of specific platforms, but is typically three
to eight channels.

There are two types of sounds in SWF file format:

1 Event Sounds
2 Streaming Sounds
Event sounds are played in response to some event such as a mouse-click, or when Flash Player
reaches a certain frame. Event sounds must be defined (downloaded) before they are used. They
can be reused for multiple events if desired. Event sounds may also have a sound ‘style’ that
modifies how the basic sound is played.

Streaming sounds are downloaded and played in tight synchronization with the timeline. In this
mode, sound packets are stored with each frame.
Note: The exact sample rates used are as follows. These are standard sample rates based on CD
audio, which is sampled at 44100 Hz. The four sample rates are one-eighth, one-quarter, one-half,
and exactly the 44100 Hz sampling rate.

“5.5 kHz” = 5512 Hz
“11 kHz” = 11025 Hz
“22 kHz” = 22050 Hz
“44 kHz” = 44100 Hz

Event Sounds

There are three tags required to play an event sound:

1 The tag DefineSound provides the audio samples that make up an event sound.
2 The record SOUNDINFO defines the styles that are applied to the event sound. Styles include

fade-in, fade-out, synchronization and looping flags, and envelope control.
3 The tag StartSound instructs Flash Player to begin playing the sound.
139

DefineSound

The DefineSound tag defines an event sound. It includes the sampling rate, size of each sample (8
or 16 bit), a stereo/mono flag, and an array of audio samples. The audio data may be stored in
four ways:

• As uncompressed raw samples.
• Compressed using an ADPCM algorithm.
• Compressed using MP3 compression (SWF 4 or later only).
• Compressed using the Nellymoser Asao codec (SWF 6 or later only).

The minimum file format version is SWF 1.

Define Sound

Field Type Comment

Header RECORDHEADER Tag type = 14

SoundId UI16 ID for this sound

SoundFormat UB[4] Format of SoundData
0 = uncompressed
1 = ADPCM
SWF 4 or later only:
2 = MP3
3 = uncompressed little-endian
SWF 6 or later only:
6 = Nellymoser

SoundRate UB[2] The sampling rate.
5.5kHz is not allowed for MP3.
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

SoundSize UB[1] Size of each sample. Always 16
bit for compressed formats.
May be 8 or 16 bit for
uncompressed formats.
0 = snd8Bit
1 = snd16Bit

SoundType UB[1] Mono or stereo sound
For Nellymoser: always 0
0 = sndMono
1 = sndStereo

SoundSampleCount UI32 Number of samples. Not
affected by mono/stereo
setting; for stereo sounds this
is the number of sample pairs.

SoundData UI8[size of sound data] The sound data; varies by
format
140 Chapter 12: Sounds

The SoundId field uniquely identifies the sound so it can be played by StartSound.

Format 0 (uncompressed) and Format 3 (uncompressed little-endian) are similar. Both encode
uncompressed audio samples. For 8-bit samples, the two formats are identical. For 16-bit
samples, the two formats differ in byte ordering. In Format 0, 16-bit samples are encoded and
decoded according to the native byte ordering of the platform on which the encoder and Flash
Player, respectively, are running. In Format 3, 16-bit samples are always encoded in little-endian
order (least significant byte first), and are byte-swapped if necessary in Flash Player before
playback. Format 0 is clearly disadvantageous because it introduces a playback platform
dependency. For 16-bit samples, Format 3 is highly preferable to Format 0 for SWF version 4
or later.

The contents of SoundData vary depending on the value of the SoundFormat field in the
SoundStreamHead tag:

• If SoundFormat is 0 or 3, SoundData contains raw, uncompressed samples.
• If SoundFormat is 1, SoundData contains an ADPCM Sound Data record.
• If SoundFormat is 2, SoundData contains an MP3 Sound Data record.
• If SoundFormat is 6, SoundData contains a Nellymoser data (see Nellymoser Compression).

StartSound

StartSound is a control tag that either starts (or stops) playing a sound defined by DefineSound.
The SoundId field identifies which sound is to be played. The SoundInfo field defines how the
sound is played. Stop a sound by setting the SyncStop flag in the SOUNDINFO record.

The minimum file format version is SWF 1.

StartSound

Field Type Comment

Header RECORDHEADER Tag type = 15

SoundId UI16 ID of sound character to play

SoundInfo SOUNDINFO Sound style information
Event Sounds 141

Sound Styles

SOUNDINFO

The SOUNDINFO record modifies how an event sound is played. An event sound is defined
with the DefineSound tag. Sound characteristics that can be modified include:

• Whether the sound loops (repeats) and how many times it loops.
• Where sound playback begins and ends.
• A sound envelope for time-based volume control.

SOUNDINFO

Field Type Comment

Reserved UB[2] Always 0

SyncStop UB[1] Stop the sound now

SyncNoMultiple UB[1] Don’t start the sound if already
playing

HasEnvelope UB[1] Has envelope information

HasLoops UB[1] Has loop information

HasOutPoint UB[1] Has out-point information

HasInPoint UB[1] Has in-point information

InPoint If HasInPoint UI32 Number of samples to skip at
beginning of sound

OutPoint If HasOutPoint UI32 Position in samples of last
sample to play

LoopCount If HasLoops UI16 Sound loop count

EnvPoints If HasEnvelope UI8 Sound Envelope point count

EnvelopeRecords If HasEnvelope
SOUNDENVELOPE[EnvPoints]

Sound Envelope records
142 Chapter 12: Sounds

SOUNDENVELOPE

The SOUNDENVELOPE structure is defined as follows:

For mono sounds, set the LeftLevel and RightLevel fields to the same value. If the values differ,
they will be averaged.

Streaming Sound

SWF file format supports a streaming sound mode where sound data is played and downloaded in
tight synchronization with the timeline. In this mode, sound packets are stored with each frame.

When streaming sound is present, and the playback CPU is too slow to maintain the desired
SWF frame rate, Flash Player skips frames of animation in order to maintain sound
synchronization and avoid dropping sound samples. (Actions from the skipped frames are
still executed.)

The main timeline of a SWF file can only have a single streaming sound playing at a time, but
each sprite can have its own streaming sound (see Sprites and Movie Clips).

SOUNDENVELOPE

Field Type Comment

Pos44 UI32 Position of envelope point as a
number of 44kHz samples.
Multiply accordingly if using a
sampling rate less than 44kHz.

LeftLevel UI16 Volume level for left channel.
Minimum is 0, maximum is
32768.

RightLevel UI16 Volume level for right channel.
Minimum is 0, maximum is
32768.
Streaming Sound 143

SoundStreamHead

If a timeline contains streaming sound data, there must be a SoundStreamHead or
SoundStreamHead2 tag before the first sound data block (see SoundStreamBlock). The
SoundStreamHead tag defines the data format of the sound data, the recommended playback
format, and the average number of samples per SoundStreamBlock.

The minimum file format version is SWF 1.

SoundStreamHead

Field Type Comment

Header RECORDHEADER Tag type = 18

Reserved UB[4] Always zero

PlaybackSoundRate UB[2] Playback sampling rate
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

PlaybackSoundSize UB[1] Playback sample size.
Always 1 (16 bit).

PlaybackSoundType UB[1] Number of playback channels;
mono or stereo.
0 = sndMono
1 = sndStereo

StreamSoundCompression UB[4] Format of streaming sound data.
1 = ADPCM
SWF 4+ only:
2 = MP3

StreamSoundRate UB[2] The sampling rate of the streaming
sound data
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

StreamSoundSize UB[1] The sample size of the streaming
sound data.
Always 1 (16 bit).

StreamSoundType UB[1] Number of channels in the
streaming sound data
0 = sndMono
1 = sndStereo
144 Chapter 12: Sounds

The PlaybackSoundRate, PlaybackSoundSize, and PlaybackSoundType fields are advisory only;
Flash Player may ignore them.

SoundStreamHead2

The SoundStreamHead2 tag is identical to the SoundStreamHead tag, except it allows different
values for StreamSoundCompression and StreamSoundSize (SWF 3).

StreamSoundSampleCount UI16 Average number of samples in each
SoundStreamBlock. Not affected
by mono/stereo setting; for stereo
sounds this is the number of
sample pairs.

LatencySeek If StreamSoundCompression = 2
SI16
Otherwise absent

See MP3 Sound Data. The value
here should match the
SeekSamples field in the first
SoundStreamBlock for this stream.

SoundStreamHead2

Field Type Comment

Header RECORDHEADER Tag type = 45

Reserved UB[4] Always zero

PlaybackSoundRate UB[2] Playback sampling rate
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

PlaybackSoundSize UB[1] Playback sample size
0 = 8-bit
1 = 16-bit

PlaybackSoundType UB[1] Number of playback channels.
0 = sndMono
1 = sndStereo

StreamSoundCompression UB[4] Format of streaming sound data.
For explanation of 0 vs. 3, see
DefineSound.
0 = uncompressed
1 = ADPCM
SWF 4 or later only:
2 = MP3
3 = uncompressed little-endian
SWF 6 or later only:
6 = Nellymoser

SoundStreamHead

Field Type Comment
Streaming Sound 145

The PlaybackSoundRate, PlaybackSoundSize, and PlaybackSoundType fields are advisory only;
Flash Player may ignore them.

SoundStreamBlock

The SoundStreamBlock tag defines sound data that is interleaved with frame data so that sounds
can be played as the movie is streamed over a network connection. The SoundStreamBlock tag
must be preceded by a SoundStreamHead or SoundStreamHead2 tag. There may only be one
SoundStreamBlock tag per SWF frame.

The minimum file format version is SWF 1.

StreamSoundRate UB[2] The sampling rate of the streaming
sound data.
5.5kHz is not allowed for MP3.
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

StreamSoundSize UB[1] Size of each sample. Always 16 bit
for compressed formats. May be 8
or 16 bit for uncompressed formats.
0 = 8-bit
1 = 16-bit

StreamSoundType UB[1] Number of channels in the
streaming sound data
0 = sndMono
1 = sndStereo

StreamSoundSampleCount UI16 Average number of samples in each
SoundStreamBlock. Not affected
by mono/stereo setting; for stereo
sounds this is the number of sample
pairs.

LatencySeek If StreamSoundCompression = 2
SI16
Otherwise absent

See MP3 Sound Data. The value
here should match the
SeekSamples field in the first
SoundStreamBlock for this stream.

SoundStreamBlock

Field Type Comment

Header RECORDHEADER Tag type = 19

StreamSoundData UI8[size of compressed data] Compressed sound data

SoundStreamHead2

Field Type Comment
146 Chapter 12: Sounds

The contents of StreamSoundData vary depending on the value of the StreamSoundCompression
field in the SoundStreamHead tag:

• If StreamSoundCompression is 0 or 3, StreamSoundData contains raw, uncompressed
samples.

• If StreamSoundCompression is 1, StreamSoundData contains an ADPCM Sound Data record.
• If StreamSoundCompression is 2, StreamSoundData contains an MP3 Sound Data record.
• If StreamSoundCompression is 6, StreamSoundData contains a NELLYMOSERDATA record.

Frame Subdivision for Streaming Sound

The best streaming sound playback is obtained by providing a SoundStreamBlock tag in every
SWF frame, and including the same number of sound samples in each SoundStreamBlock. The
ideal number of samples per SWF frame is easily determined: divide the sampling rate by the
SWF frame rate. If this results in a non-integer number, write an occasional SoundStreamBlock
with one more or one fewer samples, so that the average number of samples per frame remains as
close as possible to the ideal number.

For uncompressed audio, it is possible to include an arbitrary number of samples in a
SoundStreamBlock, so an ideal number of samples can be included in each SWF frame. For MP3
sound, the situation is different. MP3 data is itself organized into frames, and an MP3 frame
contains a fixed number of samples (576 or 1152, depending on the sampling rate).
SoundStreamBlocks containing MP3 data must contain whole MP3 frames rather than
fragments, so a SoundStreamBlock with MP3 data always contains a number of samples that is a
multiple of 576 or 1152.

There are two requirements for keeping MP3 streaming sound in sync with SWF:

• Distribute MP3 frames appropriately among SWF frames.
• Provide appropriate SeekSamples values in SoundStreamBlock tags.

These techniques are described below.

For streaming ADPCM sound, the logic for distributing ADPCM packets among SWF frames is
identical to distributing MP3 frames among SWF frames. However, for ADPCM sound, there is
no concept of SeekSamples or latency. For this and other reasons, MP3 is a preferable format for
SWF files of version 4 or later.

MP3STREAMSOUNDDATA

Field Type Comment

SampleCount UI16 Number of samples represented
by this block. Not affected by
mono/stereo setting; for stereo
sounds this is the number of
sample pairs.

Mp3SoundData MP3SOUNDDATA MP3 frames with SeekSamples
values.
Streaming Sound 147

To determine the ideal number of MP3 frames for each SWF frame, divide the ideal number of
samples per SWF frame by the number of samples per MP3 frame. This will usually result in a
non-integer number. Achieve the ideal average by interleaving SoundStreamBlocks with different
numbers of MP3 frames. For example: at a SWF frame rate of 12 and a sampling rate of 11kHz,
there are 576 samples per MP3 frame; the ideal number of MP3 frames per SWF frame is (11025
/ 12) / 576, roughly 1.6; this can be achieved by writing SoundStreamBlocks with 1 or 2 MP3
frames. While writing SoundStreamBlocks, keep track of the difference between the ideal number
of total samples and the total number of samples written so far. Put as many MP3 frames in each
SoundStreamBlock as is possible without exceeding the ideal number. Then, in each
SoundStreamBlock, use the difference between the ideal and actual numbers of samples as of the
end of the prior SWF frame as the value of SeekSamples. This will enable Flash Player to begin
sound playback at exactly the right point after a seek occurs. Here is an illustration of this
example:

The SoundStreamBlock in SWF frame 1 contains one MP3 frame and has SeekSamples set
to zero. Frame 2 contains two MP3 frames and has SeekSamples set to 919 - 576 = 343.
Frame 3 contains one MP3 frame and has SeekSamples set to 1838 - 1728 = 110.

In continuous playback, Flash Player will string all of the MP3 frames together and play them at
their natural sample rate, reading ahead in the SWF bitstream to build up a buffer of sound data
(this is why it is acceptable to include less than the ideal number of samples in a SWF frame).
After a seek to a particular frame, such as is prompted by an ActionGotoFrame, Flash Player will
skip the number of samples indicated by SeekSamples. For example, after a seek to Frame 2, it
will skip 343 samples of the SoundStreamBlock data from Frame 2, which will cause sound
playback to begin at sample 919, the ideal value.

If the ideal number of MP3 frames per SWF frame is less than one, there will be SWF frames
whose SoundStreamBlocks cannot accommodate any MP3 frames without exceeding the ideal
number of samples. In this case, write a SoundStreamBlock with SampleCount = 0,
SeekSamples = 0, and no MP3 data.
148 Chapter 12: Sounds

Some MP3 encoders have an initial latency, generating a number of silent or meaningless samples
before the desired sound data begins. This can help the Flash Player MP3 decoder as well,
providing some ramp-up data before the samples that are needed. In this situation, determine
how many samples the initial latency occupies, and supply that number for SeekSamples in the
first SoundStreamBlock. Flash Player will add this number to the SeekSamples for any other
frame when performing a seek. Latency also affects the decision as to how many MP3 frames to
put into a SoundStreamBlock. Here is a modification of the above example with a latency of
940 samples:

The SoundStreamBlock in SWF frame 1 contains three MP3 frames, the maximum that can be
accommodated without exceeding the ideal number of samples after adjusting for latency
(represented by the leftward shift of the MP3 timeline above). The value of SeekSamples in frame
1 is special; it represents the latency. Frame 2 contains one MP3 frame and has SeekSamples set
to 919 - (1728 - 940) = 131.

ADPCM Compression

ADPCM (Adaptive Differential Pulse Code Modulation) is a family of audio compression and
decompression algorithms. It is a simple but efficient compression scheme that avoids any
licensing or patent issues that arise with more sophisticated sound compression schemes, and
helps to keep player implementations small.

For SWF files of version 4 or later, MP3 Compression is a preferable format. MP3 produces
substantially better sound for a given bitrate.

ADPCM uses a modified Differential Pulse Code Modulation (DPCM) sampling technique
where the encoding of a each sample is derived by calculating a 'difference' (DPCM) value, and
applying to this a complex formula which includes the previous quantization value. The result is a
compressed code, which can recreate almost the same subjective audio quality.

A common implementation takes 16-bit linear PCM samples and converts them to 4-bit codes,
yielding a compression rate of 4:1. Public domain C code written by Jack Jansen is available at
ftp.cwi.nl/pub/audio/adpcm.zip.

SWF file format extends Jansen’s implementation to support 2, 3, 4 and 5 bit ADPCM codes.
When choosing a code size, there is the usual trade off between file-size and audio quality. The
code tables used in SWF file format are as follows (note that each structure here provides only the
unique lower half of the range, the upper half being an exact duplicate):
int indexTable2[2] = {-1, 2};
int indexTable3[4] = {-1, -1, 2, 4};
int indexTable4[8] = {-1, -1, -1, -1, 2, 4, 6, 8};
int indexTable5[16] = {-1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13,

16};
ADPCM Compression 149

ftp.cwi.nl/pub/audio/adpcm.zip

ADPCM Sound Data

The ADPCMSOUNDATA record defines the size of the ADPCM codes used, and an array of
ADPCMPACKETs which contain the ADPCM data.

ADPCMPACKETs vary in structure depending on whether the sound is mono or stereo.

ADPCMSOUNDDATA

Field Type Comment

AdpcmCodeSize UB[2]
0 = 2 bits/sample
1 = 3 bits/sample
2 = 4 bits/sample
3 = 5 bits/sample

Bits per ADPCM code less 2. The actual
size of each code is AdpcmCodeSize + 2.

AdpcmPackets If SoundType = mono
ADPCMMONOPACKET
[one or more]
If SoundType = stereo
ADPCMSTEREOPACKET
[one or more]

Array of ADPCMPACKETs

ADPCMMONOPACKET

Field Type Comment

InitialSample UI16 First sample. Identical to first sample in
uncompressed sound.

InitialIndex UB[6] Initial index into the ADPCM
StepSizeTable*

AdpcmCodeData UB[4096 * (AdpcmCodeSize+2)] 4096 ADPCM codes. Each sample is
(AdpcmCodeSize + 2) bits.
150 Chapter 12: Sounds

* Refer to the Jansen source code for an explanation of StepSizeTable.

MP3 Compression

MP3 is a sophisticated and complex audio compression algorithm supported in SWF 4 and later.
It produces superior audio quality at better compression ratios than ADPCM. Generally
speaking, MP3 refers to MPEG1 Layer 3; however, SWF supports later versions of MPEG (V2
and 2.5) that were designed to support lower bitrates. Flash Player supports both CBR (constant
bitrate) and VBR (variable bitrate) MP3 encoding.

For more information on MP3, see www.mp3-tech.org/ and www.iis.fhg.de/amm/techinf/layer3/
index.html. Writing an MP3 encoder is quite difficult, but public-domain MP3 encoding
libraries may be available.

MP3 Sound Data

MP3 Sound Data is described in the following table:

The SeekSamples field is explained in the section describing Frame Subdivision for Streaming
Sound.
Note: For event sounds, SeekSamples is limited to specifying initial latency.

ADPCMSTEREOPACKET

Field Type Comment

InitialSampleLeft UI16 First sample for left channel. Identical to
first sample in uncompressed sound.

InitialIndexLeft UB[6] Initial index into the ADPCM
StepSizeTable* for left channel

InitialSampleRight UI16 First sample for right channel. Identical to
first sample in uncompressed sound.

InitialIndexRight UB[6] Initial index into the ADPCM
StepSizeTable* for right channel

AdpcmCodeData UB[8192 * (AdpcmCodeSize+2)] 4096 ADPCM codes per channel, total
8192. Each sample is (AdpcmCodeSize +
2) bits. Channel data is interleaved left,
then right.

MP3SOUNDDATA

Field Type Comment

SeekSamples SI16 Number of samples to skip

Mp3Frames MP3FRAME[zero or more] Array of MP3 Frames
MP3 Compression 151

http://www.mp3-tech.org/
http://www.iis.fhg.de/amm/techinf/layer3/index.html
http://www.iis.fhg.de/amm/techinf/layer3/index.html

MP3 Frame

The MP3FRAME record corresponds exactly to an MPEG audio frame that you would find in an
MP3 music file. The first 32-bits of the frame contain header information, followed by an array
of bytes which are the encoded audio samples.

MP3FRAME

Field Type Comment

Syncword UB[11] Frame sync.
All bits must be set.

MpegVersion UB[2] MPEG2.5 is an extension to
MPEG2 which handles very low
bitrates, allowing the use of
lower sampling frequencies
0 = MPEG Version 2.5
1 = reserved
2 = MPEG Version 2
3 = MPEG Version 1

Layer UB[2] Layer is always equal to 1 for
MP3 headers in SWF files. The
“3” in MP3 refers to the Layer,
not the MpegVersion.
0 = reserved
1 = Layer III
2 = Layer II
3 = Layer I

ProtectionBit UB[1] If ProtectionBit == 0 a 16bit CRC
follows the header
0 = Protected by CRC
1 = Not protected
152 Chapter 12: Sounds

Bitrate UB[4] Bitrates are in thousands of bits
per second. For example, 128
means 128000 bps.
Value MPEG1 MPEG2.x

 0 free free
 1 32 8
 2 40 16
 3 48 24
 4 56 32
 5 64 40
 6 80 48
 7 96 56
 8 112 64
 9 128 80
 10 160 96
 11 192 112
 12 224 128
 13 256 144
 14 320 160
 15 bad bad

SamplingRate UB[2] Sampling rate in Hz.
Value MPEG1 MPEG2
MPEG2.5

 0 44100 22050 11025
 1 48000 24000 12000
 2 32000 16000 8000
 -- -- --

PaddingBit UB[1] Padding is used to fit the bitrate
exactly
0 = frame is not padded
1 = frame is padded with one
extra slot

Reserved UB[1]

ChannelMode UB[2] Dual channel files are made of
two independent mono
channels. Each one uses exactly
half the bitrate of the file.
0 = Stereo
1 = Joint stereo (Stereo)
2 = Dual channel
2 = Single channel (Mono)

ModeExtension UB[2]

MP3FRAME

Field Type Comment
MP3 Compression 153

* The size of the sample data is calculated like this (using integer arithmetic):
Size = (((MpegVersion == MPEG1 ? 144 : 72) * Bitrate) / SamplingRate) +

PaddingBit - 4

For example: The size of the sample data for an MPEG1frame with a Bitrate of 128000, a
SamplingRate of 44100, and PaddingBit of 1 is:

Size = (144 * 128000) / 44100 + 1 – 4 = 414 bytes

Nellymoser Compression

Starting with SWF version 6, a compressed sound format called Nellymoser Asao is available. This
is a single-channel (mono) format optimized for low-bitrate transmission of speech. The format
was developed by Nellymoser Inc. at www.nellymoser.com/.

A summary of the Nellymoser Asao encoding process is provided here. For full details of the Asao
format, contact Nellymoser.

Asao uses frequency-domain characteristics of sound for compression. Sound data is grouped
into frames of 256 samples. Each frame is converted into the frequency domain and the most
significant (highest-amplitude) frequencies are identified. A number of frequency bands are
selected for encoding; the rest are discarded. The bitstream for each frame then encodes which
frequency bands are in use and what their amplitudes are.

Copyright UB[1] 0 = Audio is not copyrighted
1 = Audio is copyrighted

Original UB[1] 0 = Copy of original media
1 = Original media

Emphasis UB[2] 0 = none
1 = 50/15 ms
2 = reserved
3 = CCIT J.17

SampleData UB[size of sample data*] The encoded audio samples.

MP3FRAME

Field Type Comment
154 Chapter 12: Sounds

http://www.nellymoser.com

CHAPTER 13
Buttons
Button characters in Macromedia Flash (SWF) serve as interactive elements. They can react
programmatically to events that occur. The most common event to handle is a simple click from
the mouse, but more complex events can be trapped as well.

Button States

A button object can be displayed in one of three states: up, over, or down.

The up state is the default appearance of the button. The up state is displayed when the Flash
movie starts playing, and whenever the mouse is outside the button. The over state is displayed
when the mouse is moved inside the button. This allows rollover or hover buttons in a Flash
movie. The down state is the clicked appearance of the button. It is displayed when the mouse is
clicked inside the button.

A fourth state—the hit state—defines the active area of the button. This is an invisible state and is
never displayed. It defines the area of the button that reacts to mouse clicks. This hit area is not
necessarily rectangular and need not reflect the visible shape of the button.

Each state is made up of a collection of instances of characters from the dictionary. Each such
instance is defined using a Button Record, which, within a button definition, acts like a
PlaceObject tag. For the up, over, and down states, these characters are placed on the display list
when the button enters that state. For the hit-area state, these characters define the active area of
the button.

Below is a typical button and its four states. The button is initially blue. When the mouse is
moved over the button it changes to a mauve color. When the mouse is pressed inside the button,
the shading changes to simulate a depressed button. The fourth state—the hit area—is a simple
rectangle. Anything outside this shape is outside the button, and anything inside this shape is
inside the button.

SWF file format has no native support for radio buttons or check boxes. There is no checked state,
and buttons cannot stick down after the mouse is released. Neither is there any way to group
buttons into mutually exclusive choices. However, both these behaviors can be simulated using
button actions.
155

Button Tracking

Button tracking refers to how a button behaves as it tracks the movement of the mouse. A button
object can track the mouse in one of two modes:

1 As a push button.
2 As a menu button.
If a push button is clicked, all mouse movement events are directed to the push button until the
mouse button is released. This is called capturing the mouse. For example, if you click a push
button and drag outside the button (without releasing) the button changes to the over state, and
the pointer remains a pointing hand.

Menu buttons do not capture the mouse. If you click on a menu button and drag outside, the
button changes to the up state, and the pointer reverts to an arrow.

Events, State Transitions and Actions

A button object can perform an action whenever there is a state transition (that is, when the
button changes from one state to another). A state transition occurs in response to some event,
such as a mouse click, or mouse entering the button. In SWF file format, events are described as
state transitions. The following table shows possible state transitions and corresponding
Flash events:

The following transitions only apply when tracking Push buttons:

State Transition Flash Event Description Visual Effect

IdleToOverUp Roll Over Mouse enters the hit area
while the mouse button is
up.

Button changes from up to
over state.

OverUpToIdle Roll Out Mouse leaves the hit area
while the mouse button is
up.

Button changes from over
to up state.

OverUpToOverDown Press Mouse button is pressed
while the mouse is inside
the hit area.

Button changes from over
to down state.

OverDownToOverUp Release Mouse button is released
while the mouse is inside
the hit area.

Button changes from down
to over state.

State Transition Flash Event Description Visual Effect

OutDownToOverDown Drag Over Mouse is dragged inside
the hit area while the
mouse button is down.

Button changes from over
to down state.

OverDownToOutDown Drag Out Mouse is dragged outside
the hit area while the
mouse button is down.

Button changes from down
to over state.

OutDownToIdle Release Outside Mouse button is released
outside the hit area while
the mouse is captured.

Button changes from over
to up state.
156 Chapter 13: Buttons

The following transitions apply only when tracking Menu buttons:

Often button actions are performed only on OverDownToOverUp (when the mouse button is
released), but DefineButton2 allows actions to be triggered by any state transition.

A button object can perform any action supported by the SWF 3 Actions.

Button Tags

Button Record

A button record defines a character to be displayed in one or more button states. The
ButtonState flags indicate which state (or states) the character belongs to.

There is not a one-to-one relationship between button records and button states. A single button
record may apply to more than one button state (by setting multiple ButtonState flags), and there
may be multiple button records for any button state.

Each button record also includes a transformation matrix and depth (stacking-order)
information. These apply just as in a PlaceObject tag, except that both are relative to the button
character itself.

State Transition Flash Event Description Visual Effect

IdleToOverDown Drag Over Mouse is dragged inside
the hit area while the
mouse button is down.

Button changes from up to
down state.

OverDownToIdle Drag Out Mouse is dragged outside
the hit area while the
mouse button is down.

Button changes from down
to up state.

BUTTONRECORD

Field Type Comment

ButtonReserved UB[4] Reserved bits; always 0

ButtonStateHitTest UB[1] Present in hit test state

ButtonStateDown UB[1] Present in down state

ButtonStateOver UB[1] Present in over state

ButtonStateUp UB[1] Present in up state

CharacterID UI16 ID of character to place

PlaceDepth UI16 Depth at which to place
character

PlaceMatrix MATRIX Transformation matrix for
character placement

ColorTransform if within DefineButton2
CXFORMWITHALPHA
otherwise absent

Character color transform
Button Tags 157

DefineButton

This tag defines a button character for later use by control tags such as PlaceObject.

DefineButton includes an array of Button Records which represent the four button shapes: an up
character, a mouse-over character, a down character, and a hit-area character. It is not necessary to
define all four states, but there must be at least one button record. For example, if the same
button record defines both the up and over states, only three button records are required to
describe the button.

More than one button record per state is allowed. If two button records refer to the same state,
both will be displayed for that state.

DefineButton also includes an array of ACTIONRECORDs which are performed when the
button is clicked and released (see SWF 3 Actions).

The minimum file format version is SWF 1.

DefineButton

Field Type Comment

Header RECORDHEADER Tag type = 7

ButtonId UI16 ID for this character

Characters BUTTONRECORD[one or
more]

Characters that make up the
button

CharacterEndFlag UI8 Must be 0

Actions ACTIONRECORD[zero or
more]

Actions to perform

ActionEndFlag UI8 Must be 0
158 Chapter 13: Buttons

DefineButton2

DefineButton2 extends the capabilities of DefineButton by allowing actions to be triggered by
any state transition.

The minimum file format version is SWF 3.

DefineButton2

Field Type Comment

Header RECORDHEADER Tag type = 34

ButtonId UI16 ID for this character

ReservedFlags UB[7] Always 0

TrackAsMenu UB[1] 0 = track as normal button
1 = track as menu button

ActionOffset UI16 Offset in bytes from start of this
field to the first
BUTTONCONDACTION, or 0
if there are no actions

Characters BUTTONRECORD
[one or more]

Characters that make up the
button

CharacterEndFlag UI8 Must be 0

Actions BUTTONCONDACTION
[zero or more]

Actions to execute at particular
button events
Button Tags 159

The actions associated with DefineButton2 are specified as follows:

For each event handler (each BUTTONCONDACTION), one or more of the Cond bitfields
should be filled in. This specifies when the event handler should be executed.

BUTTONCONDACTION

Field Type Comment

CondActionSize UI16 Offset in bytes from start of this
field to next
BUTTONCONDACTION, or 0
if last action

CondIdleToOverDown UB[1] Idle to OverDown

CondOutDownToIdle UB[1] OutDown to Idle

CondOutDownToOverDown UB[1] OutDown to OverDown

CondOverDownToOutDown UB[1] OverDown to OutDown

CondOverDownToOverUp UB[1] OverDown to OverUp

CondOverUpToOverDown UB[1] OverUp to OverDown

CondOverUpToIdle UB[1] OverUp to Idle

CondIdleToOverUp UB[1] Idle to OverUp

CondKeyPress UB[7] SWF 4 or later: key code
Otherwise: always 0
Valid key codes:
1: left arrow
2: right arrow
3: home
4: end
5: insert
6: delete
8: backspace
13: enter
14: up arrow
15: down arrow
16: page up
17: page down
18: tab
19: escape
32-126: follows ASCII

CondOverDownToIdle UB[1] OverDown to Idle

Actions ACTIONRECORD
[zero or more]

Actions to perform – see the
DoAction tag

ActionEndFlag UI8 Must be 0
160 Chapter 13: Buttons

CondKeyPress specifies a particular key to trap. A CondKeyPress event handler will be executed
even if the button that it applies to does not have input focus. For the ASCII key codes 32-126,
the key event that is trapped is composite—it takes into account the effect of the Shift key. To trap
raw key events, corresponding directly to keys on the keyboard (including the modifier keys
themselves), use clip event handlers instead.

DefineButtonCxform

Defines the color transform for each shape and text character in a button. This is not used for
DefineButton2, which includes its own CXFORM.

The minimum file format version is SWF 2.

DefineButtonSound

The DefineButtonSound tag defines which sounds (if any) are played on state transitions.

The minimum file format version is SWF 2.

DefineButtonCxform

Field Type Comment

Header RECORDHEADER Tag type = 23

ButtonId UI16 Button ID for this information

ButtonColorTransform CXFORM Character color transform

DefineButtonSound

Field Type Comment

Header RECORDHEADER Tag type = 17

ButtonId UI16 The ID of the button these
sounds apply to.

ButtonSoundChar0 UI16 Sound ID for OverUpToIdle

ButtonSoundInfo0 SOUNDINFO (if
ButtonSoundChar0 is nonzero)

Sound style for OverUpToIdle

ButtonSoundChar1 UI16 Sound ID for IdleToOverUp

ButtonSoundInfo1 SOUNDINFO (if
ButtonSoundChar1 is nonzero)

Sound style for IdleToOverUp

ButtonSoundChar2 UI16 Sound ID for
OverUpToOverDown

ButtonSoundInfo2 SOUNDINFO (if
ButtonSoundChar2 is nonzero)

Sound style for
OverUpToOverDown

ButtonSoundChar3 UI16 Sound ID for
OverDownToOverUp

ButtonSoundInfo3 SOUNDINFO (if
ButtonSoundChar3 is nonzero)

Sound style for
OverDownToOverUp
Button Tags 161

162 Chapter 13: Buttons

CHAPTER 14
Sprites and Movie Clips
A sprite corresponds to a movie clip in the Macromedia Flash authoring application. It is a
Macromedia Flash (SWF) movie contained within a SWF movie, and supports many of the
features of a regular Flash movie, such as the following:

• Most of the control tags that can be used in the main movie.
• A Timeline that can stop, start and play independently of the main movie.
• A streaming sound track that is automatically mixed with the main sound track.

A sprite object is defined with a DefineSprite tag. It consists of a character ID, a frame count, and
a series of control tags. Definition tags (such as DefineShape) are not allowed in the DefineSprite
tag. All the characters referred to by control tags in the sprite must be defined outside the sprite,
and before the DefineSprite tag.

Once defined, a sprite is displayed with a PlaceObject2 tag in the main movie. The transform
(specified in PlaceObject) is concatenated with the transforms of objects placed inside the sprite.
These objects behave like ‘children’ of the sprite, so when the sprite is moved, the objects inside
the sprite move too. Similarly, when the sprite is scaled or rotated, the child objects are also scaled
or rotated. A sprite object stops playing automatically when it is removed from the display list.

Sprite Names

When a sprite is placed on the display list, it can be given a name with the PlaceObject2 tag. This
name is used to identify the sprite so the main movie (or other sprites) can perform actions inside
the sprite. This is achieved with the SetTarget action (see ActionSetTarget).

For example, say a sprite object was placed in the main movie with the name “spinner”. The main
movie can send this sprite to the first frame in its timeline with the following action sequence:

1 SetTarget “spinner”

2 GotoFrame zero

3 SetTarget “” (empty string)
4 End of actions. (Action code = 0)
Note: All actions following SetTarget “spinner” apply to the spinner object until SetTarget “”, which
sets the action context back to the main movie.
163

SWF file format supports placing sprites within sprites, which can lead to complex hierarchies of
objects. To handle this complexity SWF file format uses a naming convention similar to that used
by file systems to identify sprites.

For example, the following outline shows four sprites defined within the main movie:
MainMovie.swf

SpriteA (name: Jack)
SpriteA1 (name: Bert)
SpriteA2 (name: Ernie)

SpriteB (name: Jill)

The following SetTarget paths identify the sprites above:

• /Jack targets SpriteA from the main movie.
• ../ targets the main movie from SpriteA
• /Jack/Bert targets SpriteA1 from any other sprite or the main movie.
• Bert targets SpriteA1 from SpriteA.
• ../Ernie targets SpriteA2 from SpriteA1
• ../../Jill targets SpriteB from SpriteA1

DefineSprite

The DefineSprite tag defines a sprite character. It consists of a character ID and a frame count,
followed by a series of control tags. The sprite is terminated with an End tag.

Definition tags (such as DefineShape) are not allowed in the DefineSprite tag. All the characters
referred to by control tags in the sprite must be defined in the main body of the file before the
sprite is defined.

The minimum file format version is SWF 3.

The following tags are valid within a DefineSprite tag:

DefineSprite

Field Type Comment

Header RECORDHEADER Tag type = 39

Sprite ID UI16 Character ID of sprite

FrameCount UI16 Number of frames in sprite

ControlTags TAG[one or more] A series of tags

• ShowFrame • StartSound

• PlaceObject • FrameLabel

• PlaceObject2 • SoundStreamHead

• RemoveObject • SoundStreamBlock

• RemoveObject2 • End

• SWF 3 Actions
164 Chapter 14: Sprites and Movie Clips

CHAPTER 15
Video
Starting with version 6, Macromedia Flash Player supports video playback. There are three ways
that video can be provided to Flash Player. The first is to embed video within a Macromedia
Flash (SWF) file using the SWF Video Tags. The second is to deliver a video stream over RTMP
through the Macromedia Flash Communication Server, which, as one option, can obtain the
video data from an FLV File Format file. The third is to load an FLV file directly into Flash Player,
using the ActionScript method NetStream.play. (This third method is only available in Flash
Player 7 and later.) SWF and FLV share a common video encoding format.

Sorenson H.263 Bitstream Format

As of version 6, a single video format, called Sorenson H.263, is available. This format is based on
H.263, an open video encoding standard maintained by the ITU. Copies of the H.263 standard
can be obtained at www.itu.int/.

All references to the H.263 standard in this document refer to the draft version of H.263, dated
May 1996, sometimes referred to as H.263v1. This is distinct from the revised version of H.263,
dated February 1998, sometimes referred to as H.263v2 or H.263+, and currently the in-force
version of H.263 according to the ITU.

The Sorenson H.263 video format differs slightly from H.263. For the most part, it is a subset of
H.263, with some advanced features removed. There are also a few additions. These changes are
described in this section.

The Sorenson H.263 video format was developed by Sorenson Media (www.sorenson.com).
Existing products that can produce Flash video are the Macromedia Flash MX authoring
application, and Sorenson Squeeze for Macromedia Flash MX, a professional video compression
application. It may also be possible to license the Sorenson Spark codec to perform Flash video
encoding; contact Sorenson Media for details.
165

http://www.itu.int/
http://www.sorenson.com

Summary of Differences from H.263

The following H.263 features have been removed from the Sorenson H.263 video format:

• GOB (group of blocks) layer
• Split-screen indicator
• Document camera indicator
• Picture freeze release
• Syntax-based arithmetic coding
• PB-Frames
• Continuous presence multipoint
• Overlapped block motion compensation

The following non-H.263 features have been added to the Sorenson H.263 video format:

• Disposable frames (difference frames with no future dependencies)
• Arbitrary picture width and height up to 65535 pixels
• Unrestricted motion vector support is always on
• A deblocking flag is available to suggest the use of a deblocking filter

In order to support these differences, the Sorenson H.263 video format uses different headers
than H.263 at both the Picture Layer and the Macroblock Layer. The GOB Layer is absent.

Two versions of the Sorenson H.263 video format are defined. In version 0, the Block Layer is
identical to H.263. In version 1, escape codes in Transform Coefficients are encoded differently
than in H.263. There are no other differences between version 0 and version 1.

Video Packet

This is the top-level structural element in a Sorenson H.263 video packet. It corresponds to the
Picture Layer in H.263 section 5.1. This structure is included within the VideoFrame tag in SWF
file format, and also within the VIDEODATA structure in FLV (see FLV File Format).
166 Chapter 15: Video

H263VIDEOPACKET

Field Type Comment

PictureStartCode UB[17] Similar to H.263 5.1.1
0000 0000 0000 0000 1

Version UB[5] Video format version
Flash Player 6 supports 0 and 1

TemporalReference UB[8] See H.263 5.1.2

PictureSize UB[3] 000: custom, 1 byte
001: custom, 2 bytes
010: CIF (352x288)
011: QCIF (176x144)
100: SQCIF (128x96)
101: 320x240
110: 160x120
111: reserved

CustomWidth If PictureSize = 000 UB[8]
If PictureSize = 001 UB[16]
Otherwise absent
Note: UB[16] is not the same as
UI16; there is no byte swapping.

Width in pixels

CustomHeight If PictureSize = 000 UB[8]
If PictureSize = 001 UB[16]
Otherwise absent
Note: UB[16] is not the same as
UI16; there is no byte swapping.

Height in pixels

PictureType UB[2] 00: intra frame
01: inter frame
10: disposable inter frame
11: reserved

DeblockingFlag UB[1] Requests use of deblocking
filter (advisory only, Flash
Player may ignore)

Quantizer UB[5] See H.263 5.1.4

ExtraInformationFlag UB[1] See H.263 5.1.9

ExtraInformation If ExtraInformationFlag = 1 UB[8]
Otherwise absent

See H.263 5.1.10

... The ExtraInformationFlag /
ExtraInformation sequence
repeats until an
ExtraInformationFlag of 0 is
encountered

Macroblock MACROBLOCK See below

PictureStuffing varies See H.263 5.1.13
Sorenson H.263 Bitstream Format 167

Macro Block

This is the next layer down in the video structure. It corresponds to the Macroblock Layer in
H.263 section 5.3.

MACROBLOCK

Field Type Comment

CodedMacroblockFlag UB[1] See H.263 5.3.1
If 1 then macroblock ends here

MacroblockType varies See H.263 5.3.2
Can cause various fields below
to be absent

BlockPattern varies See H.263 5.3.5

QuantizerInformation UB[2] See H.263 5.3.6
00: -1
01: -2
10: +1
11: +2

MotionVectorData varies[2] See H.263 5.3.7
A horizontal code followed by a
vertical code

ExtraMotionVectorData varies[6] See H.263 5.3.8
Three more MotionVectorData
code pairs are included when
MacroblockType is INTER4V

BlockData BLOCKDATA[6] See H.263 5.4
Four luminance blocks
followed by two chrominance
blocks
168 Chapter 15: Video

Block Data

This is the lowest layer in the video structure. In version 0 of the Sorenson H.263 video format,
this layer follows H.263 section 5.4 exactly.

In version 1 of the Sorenson H.263 video format, escape codes in Transform Coefficients (see
H.263 section 5.4.2) are encoded differently. When the ESCAPE code 0000 011 appears, the
next bit is a format bit that indicates the subsequent bit layout for LAST, RUN, and LEVEL. In
both cases, one bit is used for LAST and six bits are used for RUN. If the format bit is 0, seven
bits are used for LEVEL; if the format bit is 1, eleven bits are used for LEVEL. The 7-bit and 11-
bit LEVEL tables, which replace table 14 in H.263, are shown below.

Screen Video Bitstream Format

As of version 7, an additional video format, called screen video, is available. This is a simple
lossless sequential-bitmap format with blocked interframing. It is designed for sending captures of
computer screens in action.

Pixel data in the screen video format is compressed using the open standard zlib, which is
described by Internet RFCs 1950 to 1952. More information, and open-source code for
compression and decompression, are available at www.gzip.org/zlib/.

Block Format

Each frame in a screen video sequence is formatted as a series of blocks. These blocks form a grid
over the image. In a keyframe, every block is sent. In an interframe, one or more blocks will
contain no data, which indicates that the bitmap region represented by that block has not
changed since the last update of that image area.

Blocks have width and height that range from 16 to 256 in multiples of 16. Block height is not
required to match block width. The block size must not change except at a keyframe.

7-bit LEVELs 11-bit LEVELs

Index Level Code Index Level Code

- -64 FORBIDDEN - -1024 FORBIDDEN

0 -63 1000 001 0 -1023 1000 0000 001

.

61 -2 1111 110 1021 -2 1111 1111 110

62 -1 1111 111 1022 -1 1111 1111 111

- 0 FORBIDDEN - 0 FORBIDDEN

63 1 0000 001 1023 1 0000 0000 001

64 2 0000 010 1024 2 0000 0000 010

.

125 63 0111 111 2045 1023 0111 1111 111
Screen Video Bitstream Format 169

http://www.gzip.org/zlib/

Blocks are ordered from the top left of the image to the bottom right, in rows. There will be a
fixed layout of blocks for any given combination of block size and image size. To determine the
number of blocks in a row of the grid, divide the image width by the block width. If the result is
not an integer, then there will be one partial block at the end of each row, containing only the
number of pixels necessary to fill the remaining width of the image. The same logic applies to the
image height, block height, number of rows in the grid, and partial blocks in the final row. It is
important to understand the partial-block algorithm in order to create correct blocks, since the
pixels within a partial block are extracted with implicit knowledge of the width and height of
the block.

Here is an example of blocking. The image in this example is 120 x 80 pixels, and the block size is
32 x 32.
170 Chapter 15: Video

Video Packet

This is the top-level structural element in a screen video packet. This structure is included within
the VideoFrame tag in SWF file format, and also within the VIDEODATA structure in FLV
file format.

Image Block

This structure represents one block in a frame.

SCREENVIDEOPACKET

Field Type Comment

BlockWidth UB[4] Pixel width of each block in the
grid. This value is stored as
(actualWidth / 16) - 1, so
possible block sizes are a
multiple of 16 and not more
than 256.

ImageWidth UB[12] Pixel width of the full image.

BlockHeight UB[4] Pixel height of each block in
the grid. This value is stored as
(actualHeight / 16) - 1, so
possible block sizes are a
multiple of 16 and not more
than 256.

ImageHeight UB[12] Pixel height of the full image.

ImageBlocks IMAGEBLOCK[n] Blocks of image data. See
above for details of how to
calculate n. Blocks are ordered
from upper left to lower right in
rows.

IMAGEBLOCK

Field Type Comment

DataSize UB[16]
Note: UB[16] is not the same as
UI16; there is no byte swapping.

Size of the compressed block
data that follows. If this is an
interframe, and this block has
not changed since the last
update of this image area,
DataSize is 0 and the Data
field is absent.

Data UI8[DataSize] Pixel data compressed using
zlib. Pixels are ordered from
upper left to lower right in rows.
Each pixel is three bytes: B,
G, R.
Screen Video Bitstream Format 171

SWF Video Tags

The following tags define embedded video data within a SWF file. These tags are permissible only
in SWF version 6 or later.

Video embedded in SWF is always streamed: video frames are located in the SWF frames with
which they are temporally associated, and video playback can begin before an entire video stream
has been downloaded. This is comparable to the way that streaming sounds are defined (see
Streaming Sound).

DefineVideoStream

Defines a video character which can later be placed on the display list (see The Display List).

VideoFrame

Provides a single frame of video data for a video character that has already been defined with
DefineVideoStream.

In playback, the time sequencing of video frames depends on the SWF frame rate only. When
SWF playback reaches a particular SWF frame, the video images from any VideoFrame tags in
that SWF frame are rendered. Any timing mechanisms built into the video payload are ignored.

DefineVideoStream

Field Type Comment

Header RECORDHEADER Tag type = 60

CharacterID UI16 ID for this video character

NumFrames UI16 Number of VideoFrame tags
that will make up this stream

Width UI16 Width in pixels

Height UI16 Height in pixels

VideoFlagsReserved UB[5] Reserved bitfields

VideoFlagsDeblocking UB[2] 00: use VIDEOPACKET value
01: off
10: on
11: reserved

VideoFlagsSmoothing UB[1] 0: smoothing off (faster)
1: smoothing on (higher quality)

CodecID UI8 2: Sorenson H.263
3: Screen video (SWF 7+ only)
172 Chapter 15: Video

There may only be one VideoFrame tag per SWF frame per video character. There need not be a
VideoFrame tag for every video character in every SWF frame. In other words, the frame rate of a
Flash video stream may be less than—but not greater than—the SWF frame rate.

FLV File Format

Starting with version 6, Flash Player can exchange audio, video, and data over RTMP connections
with the Macromedia Flash Communication Server. One way to feed data to Flash
Communication Server (and thus on to Flash Player clients) is from files of a new Macromedia
open format called FLV. Starting with version 7, Flash Player can also directly play FLV files.

An FLV file encodes synchronized audio and video streams. The audio and video data within
FLV files are encoded in the same way as audio and video within SWF files.

This document describes FLV version 1.

Each tag type in an FLV file constitutes a single stream. There can be, at most, one audio and one
video stream, synchronized together, in an FLV file. It is not possible to define multiple
independent streams of a single type.
Note: FLV files, unlike SWF files, store multi-byte integers in big-endian byte order. This means that,
for example, the number 300 (0x12C) as a UI16 in SWF file format is represented by the byte
sequence 0x2C 0x01, while as a UI16 in FLV file format, it is represented by the byte sequence 0x01
0x2C. Also note that FLV uses a 3-byte integer type, UI24, that is not used in SWF.

VideoFrame

Field Type Comment

Header RECORDHEADER Tag type = 61

StreamID UI16 ID of video stream character of
which this frame is a part

FrameNum UI16 Sequence number of this
frame within its video stream.
Frames start at 0 and
increment by 1 each frame.

VideoData if CodecID = 2 H263VIDEOPACKET
if CodecID = 3 SCREENVIDEOPACKET

Video frame payload
FLV File Format 173

The FLV Header

All FLV files begin with the following header:

The DataOffset field always has a value of 9 for FLV version 1. This field is present in order to
accommodate larger headers in future versions.

FLV File Header

Field Type Comment

Signature UI8 Signature byte always ‘F’
(0x46)

Signature UI8 Signature byte always ‘L’
(0x4C)

Signature UI8 Signature byte always ‘V’
(0x56)

Version UI8 File version (for example, 0x01
for FLV version 1)

TypeFlagsReserved UB[5] Must be 0

TypeFlagsAudio UB[1] Audio tags are present

TypeFlagsReserved UB[1] Must be 0

TypeFlagsVideo UB[1] Video tags are present

DataOffset UI32 Offset in bytes from start of file
to start of body (that is, size of
header)
174 Chapter 15: Video

The FLV File Body

After the FLV header, the remainder of an FLV file consists of an alternation of back-pointers and
tags. They interleave like this:

FLV Tags

FLV tags have the following format:

In playback, the time sequencing of FLV tags depends on the FLV timestamps only. Any timing
mechanisms built into the payload data format are ignored.

FLV File Body

Field Type Comment

PreviousTagSize0 UI32 Always 0

Tag1 FLVTAG First tag

PreviousTagSize1 UI32 Size of previous tag, including its header.
For FLV version 1, this is the previous tag’s DataSize
plus 11.

Tag2 FLVTAG Second tag

...

PreviousTagSizeN-1 UI32 Size of second-to-last tag

TagN FLVTAG Last tag

PreviousTagSizeN UI32 Size of last tag

FLVTAG

Field Type Comment

TagType UI8 Type of this tag. Values are:
8: audio
9: video
all others: reserved

DataSize UI24 Length of the data in the Data field

Timestamp UI24 Time in milliseconds at which the data in this tag
applies. This is relative to the first tag in the FLV file,
which always has a timestamp of 0.

Reserved UI32 Always 0

Data If TagType = 8
AUDIODATA
If TagType = 9
VIDEODATA

Body of the tag
FLV File Format 175

Audio Tags

Audio tags are very similar to the DefineSound tag in SWF, and their payload data is identical,
except for the additional Nellymoser 8kHz format, which is not permitted in SWF.

Nellymoser 8kHz is a special case—the 8kHz sampling rate is not supported in other formats,
and the SoundRate bits can’t represent this value. When Nellymoser 8kHz mono is specified in
SoundFormat, the SoundRate and SoundType fields are ignored. For other Nellymoser sampling
rates, specify the normal Nellymoser SoundFormat and use the SoundRate and SoundType fields
as usual.

AUDIODATA

Field Type Comment

SoundFormat UB[4]
0 = uncompressed
1 = ADPCM
2 = MP3
5 = Nellymoser 8kHz
mono
6 = Nellymoser

Format of SoundData

SoundRate UB[2]
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

The sampling rate

SoundSize UB[1]
0 = snd8Bit
1 = snd16Bit

Size of each sample

SoundType UB[1]
0 = sndMono
1 = sndStereo

Mono or stereo sound
For Nellymoser: always 0

SoundData UI8[size of sound data] The sound data – varies by format
176 Chapter 15: Video

Video Tags

Video tags are very similar to the VideoFrame tag in SWF, and their payload data is identical.

VIDEODATA

Field Type Comment

CodecID UB[4] 2: Sorenson H.263
3: Screen video

FrameType UB[4] 1: keyframe
2: inter frame
3: disposable inter frame
(H.263 only)

VideoData if CodecID = 2
H263VIDEOPACKET
if CodecID = 3
SCREENVIDEOPACKET

Video frame payload
FLV File Format 177

178 Chapter 15: Video

APPENDIX
Flash Uncovered: A Simple Macromedia Flash

(SWF) File Dissected
In order to write Macromedia Flash SWF files, it is necessary to be able to read and understand
the raw bits and bytes. Here we will examine a simple, one-frame Flash movie that contains only
a rectangle.

Here is a hex dump of the SWF file:
000000 46 57 53 03 4F 00 00 00 78 00 05 5F 00 00 0F A0
000010 00 00 0C 01 00 43 02 FF FF FF BF 00 23 00 00 00
000020 01 00 70 FB 49 97 0D 0C 7D 50 00 01 14 00 00 00
000030 00 01 25 C9 92 0D 21 ED 48 87 65 30 3B 6D E1 D8
000040 B4 00 00 86 06 06 01 00 01 00 00 40 00 00 00

A SWF file always begins with a header. It describes the file version, the length of the file in
bytes, the frame size in twips (twentieths of a pixel), frame rate in frames per second, and the
frame count.

SWF File Header

Field Type* Comment

Signature UI8 Signature byte:
“F” indicated uncompressed
“C” indicates compressed (SWF 6 or later only)

Signature UI8 Signature byte always “W”

Signature UI8 Signature byte always “S”

Version UI8 Single byte file version (for example, 0x06 for SWF 6)

FileLength UI32 Length of entire file in bytes

FrameSize RECT Frame size in twips

FrameRate UI16 Frame delay in 8.8 fixed number of frames per second

FrameCount UI16 Total number of frames in movie

* The types are defined in Basic Data Types.
179

The first three bytes are the standard signature for all SWF files. They are the ASCII values of the
characters ‘F’ (or ‘C’), ‘W’, and ‘S’ in that order. The fourth byte indicates the version of the file.

The next four bytes represent an unsigned 32-bit integer indicating the file size. Here’s where it
starts getting tricky and machine architecture gets involved. The next four bytes are 0x4F000000
so that would imply that the file length is 1325400064 bytes, a very large number which doesn’t
make sense. What we failed to do is swap all the bytes.

In SWF files, bytes are swapped whenever reading words and dwords such that a 32-bit value
B1B2B3B4 is written as B4B3B2B1, and a 16-bit value B1B2 is written as B2B1. Single bytes are
written unchanged since there is no bit-swapping. The reason for this is the differences in storage
and retrieval between the Mac and PC processors.

Reversing the bytes we can read the four bytes correctly and see that file is 79 bytes long.

The next nine bytes represent a data structure used in the SWF format called a Rectangle. Here is
the file description of a rectangle:

To understand these bytes, we need to look at the individual bits.
78 00 05 5F 00 00 0F A0 00

0111 1000 0000 0000 0000 0101 0101 1111 0000 0000
0000 0000 0000 1111 1010 0000 0000 0000

There are five fields in a rectangle structure: Nbits, Xmin, Xmax, Ymin, Ymax. The unsigned
Nbits field occupies the first five bits of the rectangle and indicates how long the next four signed
fields are.

Here’s where we hit another subtle point about the SWF file representation. Reading and writing
bits is different from reading and writing words and dwords. There is no swapping at all. This is
because when Flash is reading an n-bit field, it reads a byte at a time until it has read all n bits.
You don’t do any swapping inside of bytes so there is no swapping at all. So the next five bits are
read in order and evaluate to 15. Although the Nbit field usually varies, it appears fixed in the
header so that header has a fixed size (It may just be because the movie dimensions are usually
the same).
01111 ➜ 15

0x46 ➜ ‘F’ 0x57 ➜ ‘W’ 0x53 ➜ ‘S’ 0x03 ➜ 3

0x4F000000 ➜ 0x0000004F ➜ 79

RECT

Field Type Comment

Nbits UB[5] Bits in each rect value field

Xmin SB[Nbits] x minimum position for rect

Xmax SB[Nbits] x maximum position for rect

Ymin SB[Nbits] y minimum position for rect

Ymax SB[Nbits] y maximum position for rect
180 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

What if Nbit has a value of sixteen? This is exactly the size of a word so do we read the following
fields as words and swap bytes? No. Fields described by bit size are always read a byte at a time.
No swapping, just read the next n bits in that order.

For the header, the rectangle is used to store the movie dimensions with Xmax corresponding to
the movie width and Ymax corresponding to the movie height, both in twips. In SWF a twip is a
twentieth of a pixel, so if we convert to pixels, we see that our movie is 550 x 400.

Now we have looked at all of the fields of the rectangle and evaluated them, but what about those
last seven bits which are all 0s. Well, they were just “filled.”
0000000 = filled bits

After the end of any structure, if the structure does not completely fill up its last byte, then that
last byte is filled with 0s to keep the next item byte aligned. So if the next item is a word or
dword, you can read it as such and not worry about being in the middle of a byte. In this case,
only one bit in the last byte is used so the last seven bits are filled with 0s.

Next in the header is the frame rate. It is supposed to be stored as a 16-bit integer, but the first
byte (or last depending on how you look at it) is completely ignored. So the frame rate is 12 fps.

Next is the frame count, which is also a 16-bit integer. So the frame count is 1.

Now we are done with the header. After the header is a series of tagged data blocks. Here is a
description of a tag (this is simplifying somewhat; byte swapping is necessary):

000000000000000 ‹ 0 = Xmin

010101011111000 ‹ 11000 = Xmax

000000000000000 ‹ 0 = Ymin

001111101000000 ‹ 8000 = Ymax

0x000C ➜ 0x0C00 ➜ 0x0C ➜ 12 = frame rate

0x0100 ➜ 0x0001(byte swapping) ➜ 1 = frame count

RECORDHEADER (short)

Field Type Comment

TagCodeAndLength UI16 Upper 10 bits: tag type
Lower 6 bits: tag length

RECORDHEADER (long)

Field Type Comment

TagCodeAndLength UI16 Tag type and length of 0x3F
Packed together as in short header

Length UI32 Length of tag
181

There are two types of tags. They are the short and long tag header. Regardless of which case you
have, you begin by looking at the first word.

The first 10 bits of the tag are the unsigned tag type. The tag type indicates what type of data is to
follow in the body of the data block to follow. In this case the value of the tag type is 9, which
corresponds to a SetBackgroundColor block. The last six unsigned bits of the tag header indicate
the length of the data block to follow if it is 62 bytes or less. If the length of the data block is more
than 62 bytes, then this field has all 1s and the length is indicated in the following dword. For the
tag we are looking at, the field does not have all 1s, so it does indicate the actual length which is 3
bytes.
0000001001 = 9 = SetBackgroundColor000011 = 3 = body length

Since we know that the length of the body is 3 bytes, let’s take a look at it. A SetBackgroundColor
tag only contains the 3-byte RGB color description so we evaluate it as such. A color is its own 3-
byte data type so there is no byte swapping.
0XFFFFFF = white

The next tag is a long tag and is a DefineShape tag.

Here is the file description of DefineShape:

The body of a DefineShape is composed of an unsigned 16-bit character ID, a rectangle defining
the bounds for the shape, and a SHAPEWITHSTYLE structure which contains shape
information.

0x4302 ➜ 0x0243 ➜ 0000 0010 0100 0011

0xBF00 ➜ 0x00BF ➜ 0000 0000 1011 1111

0000000010 = 3 = DefineShape 111111 = body length (so we have to look at the next dword)

0x23000000 ➜ 0x00000023 ➜ 35 = body length

DefineShape

Field Type Comment

Header RECORDHEADER Tag type = 2

ShapeId UI16 ID for this character

ShapeBounds RECT Bounds of the shape

Shapes SHAPEWITHSTYLE Shape information

0x0100 ➜ 0x0001 ➜ 1 = shape ID
182 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

Now the Rect which defines the boundaries:
70 FB 49 97 0D 0C 7D 50

0111 0000 1111 1011 0100 1001 1001 0111 0000 1101 0000
1100 0111 1101 0101 0000
01110 = 14 = Nbits

The SHAPEWITHSTYLE structure is described below.

A fill style array itself has three fields. The first field is an 8-bit integer count which indicates how
many fill styles are in the array. This count works similar to the tag’s length field in that if it is all
1s, you have to look at the next 16 bits to get the actual length. Here is the file description:

In this case, the 8-bit count is equal to 0 so there is nothing to follow it.

0x00 = 0 = FillStyleCount ➜ This is the end of the fill style array because it has no elements

00011111011010 = 2010 = Xmin /20 to covert to pixels from twips 100.5

01001100101110 = 4910 = Xmax 245.5

00011010000110 = 1670 = Ymin 83.5

00111110101010 = 4010 = Ymax 200.5

000 = fill bits

SHAPEWITHSTYLE

Field Type Comment

FillStyles FILLSTYLEARRAY Array of fill styles

LineStyles LINESTYLEARRAY Array of line styles

NumFillBits UB[4] Number of fill index bits

NumLineBits UB[4] Number of line index bits

ShapeRecords SHAPERECORD[one or
more]

Shape records (see below)

FILLSTYLEARRAY

Field Type Comment

FillStyleCount UI8 Count of fill styles

FillStyleCountExtended If FillStyleCount = 0xFF UI16 Extended count of fill styles. Supported
only for Shape2 and Shape3.

FillStyles FILLSTYLE[FillStyleCount] Array of fill styles
183

A line style array is exactly the same as a fill style array except it stores line styles. Here is the
file description:

0x01 = 1 = LineStyleCount ➜ So there is one line style in the array.

A line style has two parts, an unsigned 16-bit integer indicating the width of a line in twips, and a
color. Here is the file description:

The color in this case is a 24-bit RGB, but if we were doing a DefineShape3, it would be a 32-bit
RGBA where alpha is the transparency of the color.
0x1400 ➜ 0x0014 = 20 = width = 1 pixel
0x000000 = RGB = black

Back to the ShapeWithStyle, the NumFillBits field is 4 bits, as is the NumLineBits.

LINESTYLEARRAY

Field Type Comment

LineStyleCount UI8 Count of line styles

LineStyleCountExtended If LineStyleCount = 0xFF UI16 Extended count of line
styles

LineStyles LINESTYLE[count] Array of line styles

LINESTYLE

Field Type Comment

Width UI16 Width of line in twips

Color RGB (Shape1 or Shape2)
RGBA (Shape3)

Color value including alpha channel
information for Shape3

0x0 = 0 = NumFillBits 0x1 = 1 = NumLineBits
184 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

Now for the array of shape records. The following four tables describe the four types of shape
records. Here are the file descriptions:

ENDSHAPERECORD

Field Type Comment

TypeFlag UB[1] Non-edge record flag
Always 0

EndOfShape UB[5] End of shape flag
Always 0

STYLECHANGERECORD

Field Type Comment

TypeFlag UB[1] Non-edge record flag
Always 0

StateNewStyles UB[1] New styles flag. Used by
DefineShape2 and
DefineShape3 only.

StateLineStyle UB[1] Line style change flag

StateFillStyle1 UB[1] Fill style 1 change flag

StateFillStyle0 UB[1] Fill style 0 change flag

StateMoveTo UB[1] Move to flag

MoveBits If StateMoveTo
UB[5]

Move bit count

MoveDeltaX If StateMoveTo
SB[MoveBits]

Delta X value

MoveDeltaY If StateMoveTo
SB[MoveBits]

Delta Y value

FillStyle0 If StateFillStyle0
UB[FillBits]

Fill 0 Style

FillStyle1 If StateFillStyle1
UB[FillBits]

Fill 1 Style

LineStyle If StateLineStyle
UB[LineBits]

Line Style

FillStyles If StateNewStyles FILLSTYLEARRAY Array of new fill styles

LineStyles If StateNewStyles LINESTYLEARRAY Array of new line styles

NumFillBits If StateNewStyles
UB[4]

Number of fill index bits for new
styles

NumLineBits If StateNewStyles
UB[4]

Number of line index bits for
new styles
185

STRAIGHTEDGERECORD

Field Type Comment

TypeFlag UB[1] This is an edge record.
Always 1.

StraightFlag UB[1] Straight edge.
Always 1.

NumBits UB[4] Number of bits per value
(two less than the actual
number).

GeneralLineFlag UB[1] General Line equals 1.
Vert/Horz Line equals 0.

DeltaX If GeneralLineFlag
SB[NumBits+2]

X delta

DeltaY If GeneralLineFlag
SB[NumBits+2]

Y delta

VertLineFlag If GeneralLineFlag
SB[1]

Vertical Line equals 1.
Horizontal Line equals 0.

DeltaX If VertLineFlag
SB[NumBits+2]

X delta

DeltaY If VertLineFlag
SB[NumBits+2]

Y delta

CURVEDEDGERECORD

Field Type Comment

TypeFlag UB[1] This is an edge record.
Always 1.

StraightFlag UB[1] Curved edge.
Always 0.

NumBits UB[4] Number of bits per value.
(two less than the actual
number)

ControlDeltaX SB[NumBits+2] X control point change

ControlDeltaY SB[NumBits+2] Y control point change

AnchorDeltaX SB[NumBits+2] X anchor point change

AnchorDeltaY SB[NumBits+2] Y anchor point change
186 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

ENDSHAPERECORD defines the end of the shape record array. STYLECHANGERECORD
defines changes in line style, fill style, position, or a new set of styles.
STRAIGHTEDGERECORD and CURVEDEDGERECORD define a straight or curved edge,
respectively. The first bit in a shape record is a type flag. A 0 corresponds to a non-edge record,
and a 1 corresponds to an edge record. Looking at the first bit of our first shape record, we see
that it is not an edge record. Now we must look at the next five bits which are all flags that tell us
what is to follow. If all of the five bits are 0, then that is a type0 shape record and defines the end
of the array of shape records.
25 C9 92 0D 21

0010 0101 1100 1001 1001 0010 0000 1101 0010 0001

0 = 0 = non edge record

01001 = 5 flags line style flag is true, and move to flag is true

Since the move to flag is true, the next five bits are the MoveBits field. This value is 14 so the next
two fields which are the MoveDeltaX, and the MoveDeltaY are of size 14. These are unsigned
numbers.

01110 = MoveBits

01001100100100 = 4900 (twips) = 245 pixels = MoveDeltaX

00011010010000 = 1680 = 84 pixels = MoveDeltaY

Since the line style flag is true, the next field is a NumLineBits = 1 bit field representing the line
style. This field is equal to 1. This means that the line style for the line to follow is the first one in
the line style array.

1 = 1 = line style

Now for the rest of the shape records:
ED 48 87 65 30 3B 6D E1 D8 B4 00 00

1110 1101 0100 1000 1000 0111 0110 0101 0011 0000 0011 1011 0110
1101 1110 0001 1101 1000 1011 0100 0000 0000 0000 0000

The next shape record begins with a 1, so it is an edge record.

The next bit indicates if it is a straight or curved edge. It is a 1, which stands for a straight edge.
The next four bits indicate the size of any delta fields which follow. The formula for the NumBits
value is 2 + whatever the value of that 4-bit field. In this case, the value of NumBits is 13.
Following the NumBits field is a 1-bit line flag. This indicates whether the line being described is
a general line or horizontal/vertical line. The value of 0 corresponds to a hor/vert line, so the next
bit is a VertLineFlag field and indicates whether the line is horizontal or vertical. The value of the
bit is 1 which corresponds to a vertical line. The next field for a vertical line is the signed DeltaY
field which is nbits = 13 bits long. The value corresponds to 116 pixels. That is the end of the
shape record.

1 = 1 = edge record

1 = 1 = straight edge

1011 = 11 + 2 = 13 = NumBits
187

0 = 0 = hor/vert line

1 = 1 = vertical line

0100100010000 = 2320 twips = 116 pixels = DeltaY

The next three records are very similar to the last one:

1 = 1 = edge record

1 = 1 = straight edge

1011 = 11 + 2 = 13 = NumBits

0 = 0 = hor/vert line

0 = 0 = horizontal line

1010011000000 = -2880 twips (2’s complement number) = -144 pixels = DeltaX

1 = 1 = edge record

1 = 1 = straight edge

1011 = 11 + 2 = 13 = NumBits

0 = 0 = hor/vert line

1 = 1 = vertical line

1011011110000 = -2320 twips = -116 pixels = DeltaY

1 = 1 = edge record

1 = 1 = straight edge

1011 = 11 + 2 = 13 = NumBits

0 = 0 = hor/vert line

0 = 0 = horizontal line

0101101000000 = 2880 twips = 144 pixels = DeltaX

Finally, the last shape record begins with a 0 which means it is not an edge record. Furthermore,
all of its flag bits are equal to 0, which means that it is the last shape record and we are through
with our shape record array.

0 = 0 = non-edge record

000000 = flags (since they are all 0, this is the end of the shape record array

Since we are done with our structure, we must now fill our last byte with 0s to keep byte aligned.

000000 = filled 0s

We are also done with our shape with style since the shape record array is the last element of the
shape with style. Since we are already byte aligned, we can go on to our next tagged data block.

The Tag type of the block is equal to 26 which corresponds to a PlaceObject2. The length field
has a value of 6 so the length of the data block is 6 bytes.

0000011010 = 26 = tag type = PlaceObject2

0x8606 ➜ 0x0686 ➜ 0000 0110 1000 0110
188 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

000110 = 6 = length
06 01 00 01 00 00

0000 0110 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000

Here is the file description of the PlaceObject2 tag:

The first eight bits of the body are all flags indicating what is to follow. A 1 in the sixth bit
indicates that the body has a transform matrix, and the 1 in the seventh bit indicates that the
object to be placed has a character ID.

00000110 ➜ body has a transform matrix and object has a character ID

PlaceObject2

Field Type Comment

Header RECORDHEADER Tag type = 26.

PlaceFlagHasClipActions UB[1] SWF 5 or later: has clip actions
(sprite characters only).
Otherwise: always 0.

PlaceFlagHasClipDepth UB[1] Has clip depth.

PlaceFlagHasName UB[1] Has name.

PlaceFlagHasRatio UB[1] Has ratio.

PlaceFlagHasColorTransform UB[1] Has color transform.

PlaceFlagHasMatrix UB[1] Has matrix.

PlaceFlagHasCharacter UB[1] Places a character.

PlaceFlagMove UB[1] Defines a character to be
moved.

Depth UI16 Depth of character.

CharacterId If PlaceFlagHasCharacter
UI16

ID of character to place.

Matrix If PlaceFlagHasMatrix
MATRIX

Transform matrix data.

ColorTransform If PlaceFlagHasColorTransform
CXFORMWITHALPHA

Color transform data.

Ratio If PlaceFlagHasRatio UI16

Name If PlaceFlagHasName STRING Name of character.

ClipDepth If PlaceFlagHasClipDepth UI16 Clip depth
(see Clipping Layers).

ClipActions If PlaceFlagHasClipActions
CLIPACTIONS

SWF 5 or later:
Clip Actions Data.
189

Following the flags is a 16-bit unsigned integer which indicates the depth of the character. In this
case the depth is 1, which makes sense since the rectangle is the only object in the movie.

Since the object has a character ID, the next field in the body is the unsigned 16-bit ID. Since the
rectangle is the only object in the movie, the ID of the rectangle is 1.

The final field for this PlaceObject2 is the transform matrix. Here is the file description:

Since this shape has no transform information, the matrix is empty. All of its flag bits have values
of zero. This is not super efficient but it is valid.

Since we are done with our PlaceObject2, let’s take a look at our next tag.

Tag type = 1 = ShowFrame

length = 0

We see that the tag is an instruction to show the frame. A ShowFrame has no body. Its length is 0,
so we move on to the next tag.

Tag type = 0 = end

length = 0

We have reached the end tag which signals the end of our SWF file.

0x0100 ➜ 0x0001 ➜ depth = 1

0x0100 ➜ 0x0001 ➜ character ID = 1

MATRIX

Field Type Comment

HasScale UB[1] Has scale values if equal to 1.

NScaleBits If HasScale = 1, UB[5] Bits in each scale value field.

ScaleX If HasScale = 1, FB[NScaleBits] x scale value.

ScaleY If HasScale = 1, FB[NScaleBits] y scale value.

HasRotate UB[1] Has rotate and skew values if equal to 1.

NRotateBits If HasRotate = 1, UB[5] Bits in each rotate value field.

RotateSkew0 If HasRotate = 1, FB[NRotateBits] First rotate and skew value.

RotateSkew1 If HasRotate = 1, FB[NRotateBits] Second rotate and skew value.

NTranslateBits UB[5] Bits in each translate value field.

TranslateX SB[NTranslateBits] x translate value in twips.

TranslateY SB[NTranslateBits] y translate value in twips.

0x00 ➜ completely empty matrix with leftover bits filled

0x4000 ➜ 0x0040 ➜ 0000 0000 0100 0000

0x0000 0x0000 0000 0000 0000 0000
190 Appendix: Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

	Contents
	Macromedia Flash (SWF) File Format Specification
	The SWF Header
	SWF File Structure
	Tag Format
	Definition and Control Tags
	Tag Ordering in SWF
	The Dictionary
	Processing a SWF File
	File Compression Strategy
	Summary

	What’s New in Macromedia Flash (SWF) File Format 7
	ActionScript extensions
	New video format
	Runtime ActionScript controls
	SetTabIndex
	ClipEventConstruct
	Small text rendering

	Macromedia Flash (SWF) File Format 6
	File compression
	Unicode support
	Named anchors
	ActionScript extensions
	New audio and video formats
	The FLV file format
	Improved documentation

	Basic Data Types
	Coordinates and Twips
	Integer Types and Byte Order
	Fixed Point Numbers
	Bit Values
	Using Bit Values

	String Values
	Language Code
	RGB Color Record
	RGBA Color with Alpha Record
	Rectangle Record
	Matrix Record
	Color Transform Record
	Color Transform with Alpha Record

	The Display List
	Clipping Layers
	Using the Display List
	Display List Tags
	PlaceObject
	PlaceObject2
	ClipEventFlags
	RemoveObject
	RemoveObject2
	ShowFrame

	Control Tags
	SetBackgroundColor
	FrameLabel
	Protect
	End

	ExportAssets
	ImportAssets
	EnableDebugger
	EnableDebugger2
	ScriptLimits
	SetTabIndex

	Actions
	SWF 3 Action Model
	SWF 3 Actions
	DoAction Tag
	ActionRecord
	ActionGotoFrame
	ActionGetURL
	ActionNextFrame
	ActionPreviousFrame
	ActionPlay
	ActionStop
	ActionToggleQuality
	ActionStopSounds
	ActionWaitForFrame
	ActionSetTarget
	ActionGoToLabel

	SWF 4 Action Model
	The Program Counter
	SWF 4 Actions
	Stack Operations
	ActionPush
	ActionPop

	Arithmetic Operators
	ActionAdd
	ActionSubtract
	ActionMultiply
	ActionDivide

	Numerical Comparison
	ActionEquals
	ActionLess

	Logical Operators
	ActionAnd
	ActionOr
	ActionNot

	String Manipulation
	ActionStringEquals
	ActionStringLength
	ActionStringAdd
	ActionStringExtract
	ActionStringLess
	ActionMBStringLength
	ActionMBStringExtract

	Type Conversion
	ActionToInteger
	ActionCharToAscii
	ActionAsciiToChar
	ActionMBCharToAscii
	ActionMBAsciiToChar

	Control Flow
	ActionJump
	ActionIf
	ActionCall

	Variables
	ActionGetVariable
	ActionSetVariable

	Movie Control
	ActionGetURL2
	ActionGotoFrame2
	ActionSetTarget2
	ActionGetProperty
	ActionSetProperty
	ActionCloneSprite
	ActionRemoveSprite
	ActionStartDrag
	ActionEndDrag
	ActionWaitForFrame2

	Utilities
	ActionTrace
	ActionGetTime
	ActionRandomNumber

	SWF 5 Action Model
	SWF 5 Actions
	ScriptObject Actions
	ActionCallFunction
	ActionCallMethod
	ActionConstantPool
	ActionDefineFunction
	ActionDefineLocal
	ActionDefineLocal2
	ActionDelete
	ActionDelete2
	ActionEnumerate
	ActionEquals2
	ActionGetMember
	ActionInitArray
	ActionInitObject
	ActionNewMethod
	ActionNewObject
	ActionSetMember
	ActionTargetPath
	ActionWith

	Type Actions
	ActionToNumber
	ActionToString
	ActionTypeOf

	Math Actions
	ActionAdd2
	ActionLess2
	ActionModulo

	Stack Operator Actions
	ActionBitAnd
	ActionBitLShift
	ActionBitOr
	ActionBitRShift
	ActionBitURShift
	ActionBitXor
	ActionDecrement
	ActionIncrement
	ActionPush (Enhancements)
	ActionPushDuplicate
	ActionReturn
	ActionStackSwap
	ActionStoreRegister

	SWF 6 Action Model
	SWF 6 Actions
	DoInitAction Tag
	ActionInstanceOf
	ActionEnumerate2
	ActionStrictEquals
	ActionGreater
	ActionStringGreater

	SWF 7 Action Model
	SWF 7 Actions
	ActionDefineFunction2
	ActionExtends
	ActionCastOp
	ActionImplementsOp
	ActionTry
	ActionThrow

	Shapes
	Shape Overview
	Shape Example
	Shape Structures
	Fill Styles
	FILLSTYLEARRAY
	FILLSTYLE

	Line Styles
	LINESTYLEARRAY
	LINESTYLE

	Shape structures
	SHAPE
	SHAPEWITHSTYLE

	Shape Records
	EndShapeRecord
	StyleChangeRecord
	FillStyle0 and FillStyle1

	Edge Records
	StraightEdgeRecord
	CurvedEdgeRecord
	Converting between Quadratic and Cubic Bezier curves

	Shape Tags
	DefineShape
	DefineShape2
	DefineShape3

	Gradients
	Gradient Transformations
	Gradient Control Points
	Gradient Structures
	GRADIENT
	GRADRECORD

	Bitmaps
	DefineBits
	JPEGTables
	DefineBitsJPEG2
	DefineBitsJPEG3
	DefineBitsLossless
	DefineBitsLossless2

	Shape Morphing
	DefineMorphShape
	MorphFillStyles
	Morph Gradient Values
	MORPHGRADIENT
	MORPHGRADRECORD

	Morph Line Styles
	MORPHLINESTYLES
	MORPHLINESTYLE

	Fonts and Text
	Glyph Text and Device Text
	Static Text and Dynamic Text
	Glyph Text
	Glyph Definitions
	The EM Square
	Converting TrueType fonts to SWF glyphs
	Kerning and Advance Values
	DefineFont and DefineText
	Static Glyph Text Example

	Font Tags
	DefineFont
	DefineFontInfo
	Western Indirect Fonts
	Japanese Indirect Fonts
	DefineFontInfo2
	DefineFont2
	Kerning Record

	Static Text Tags
	DefineText
	Text Records
	Glyph Entry
	DefineText2

	Dynamic Text Tags
	DefineEditText

	Sounds
	Event Sounds
	DefineSound
	StartSound
	Sound Styles
	SOUNDINFO
	SOUNDENVELOPE

	Streaming Sound
	SoundStreamHead
	SoundStreamHead2
	SoundStreamBlock
	Frame Subdivision for Streaming Sound

	ADPCM Compression
	ADPCM Sound Data

	MP3 Compression
	MP3 Sound Data
	MP3 Frame

	Nellymoser Compression

	Buttons
	Button States
	Button Tracking
	Events, State Transitions and Actions
	Button Tags
	Button Record
	DefineButton
	DefineButton2
	DefineButtonCxform
	DefineButtonSound

	Sprites and Movie Clips
	Sprite Names
	DefineSprite

	Video
	Sorenson H.263 Bitstream Format
	Summary of Differences from H.263
	Video Packet
	Macro Block
	Block Data

	Screen Video Bitstream Format
	Block Format
	Video Packet
	Image Block

	SWF Video Tags
	DefineVideoStream
	VideoFrame

	FLV File Format
	The FLV Header
	The FLV File Body
	FLV Tags
	Audio Tags
	Video Tags

	Flash Uncovered: A Simple Macromedia Flash (SWF) File Dissected

