
Database Access with EJB Application Servers Performance Study
Marcin Jarząb, Krzysztof Zieliński
Department of Computer Science

University of Mining and Metallurgy
Al. Mickiewicza 30, 30-059 Kraków, Poland

1. Introduction

Enterprise Java Beans (EJB) [6] is a server-side component architecture that simplifies the
process of building enterprise-class distributed component applications in Java. This
component technology originally proposed by SUN Microsystem is agreed upon by the
industry, supports portability and rapid development of server side applications. EJB
components (enterprise beans) are deployed within application servers (EJB containers),
which provide the needed middleware.

EJB 2.0 specification defines three different kinds of enterprise beans: session beans which
model business processes, entity beans which are the object that caches database information,
and message-driven beans which are similar to session beans but could be called only by
sending messages to those beans. Enterprise beans are not full-fledged remote object but their
invocations are intercepted by the EJB container and then delegated to the bean instances. At
the interception point the following major services provided by the EJB container are also
available: transaction management, persistence, resource management and component life
cycle, security, concurrency, and remote accessibility.

EJB containers are responsible for managing enterprise beans and interact with beans by
calling management methods as required. A multi-tier architecture scalability is enhanced
when EJB container intelligently manages the needed resources across a variety of deployed
components. These resources could be threads, socket connections, database connections, and
more. It means that the EJB container is responsible for coordinating the entire effort of
resource management as well as managing the deployment beans’ life cycle. The interface
between enterprise beans and the EJB container is a fundamental point of this technology
which is described in detail by the EJB specification [9]. Exact management schemes and
their configuration attributes used by EJB container is application server implementation
specific. This makes evaluation of Application Servers offered by different vendors rather
difficult and opens an area for interesting performance study.

The paper deals with database access with EJB Application Servers performance study.
Attention is paid to EJB container management schemes that support persistency and database
operations. Their activity depends on many attributes set in configuration of EJB Application
Server. These attributes control JDBC [18] operations or Container Managed Persistency
(CMP) [9] and Transaction Service performed by the Application Server and could
substantially influence the overall system performance. The number of these attributes, and
inconsistence of their semantic definition across different EJB Application Servers
implementation, make the choice of setting which provides the best performance for the
given application a nontrivial task. In this paper two detailed aspects related to this problem
gain a particular attention: (i) optimized entity EJB beans loading, and (ii) attributes settings
for CMP. As alternative to entity beans Data Access Objects (DAO) have been considered
and tested.

EJB based application performance is also very much depended on enterprise bean interfaces
definition, their granularity, and data structure used for inter-communication. Thorough

consideration of structuralization of the business processing and data access results in a
proposal of design patterns [5]. The design patterns have been actively exploited in the
presented study to eliminate an additional overhead introduced by the inefficient usage of the
EJB technology.

The paper is structured as follows. In Section 2 patterns used for structuralization of database
access via application server are shortly described. Next, tuning mechanisms applicable to
most of EJB Application Servers such as control of transaction behaviour, tune thread count
and some features proprietary for application servers vendors are discussed. Next,
performance study methodology and scenarios are described. Performance test results of three
most popular Application Server such as BEA Weblogic, JBOSS and Sun ONE are presented
in Section 4. The obtained results are compared and summarized in Section 5. The paper is
ended with conclusions.

2. Database Access Design Patterns

Building applications with the EJB technology in an efficient way requires very good
understanding of the key characteristics of this middleware platform. The experience gained
by application programmers in many areas of software engineering has been summarized as
Design Patterns. Pattern is a solution to a recurring problem in the context. Once Pattern
(solution) is developed from a recurring problem that can be reused many times without
reinventing the solution again. Patterns are popularized by the classic book [1]. Specifically
for EJB problems and solutions, we have now Core J2EE Patterns, Best Practices and Design
Strategies defined by Sun Java Center [2] and EJB Design Patterns accessible from [7].

This section mainly focuses on performance improvement practices using Patterns in EJB.
As many reports [11] referring to this issue exist we limited the presentation only to the
selected solutions which we apply in our study. To understand the organization of these
Patterns it is necessary to distinguish between session and entity beans. Session beans are
business process objects which are relatively short-living component. Their lifetime is
roughly equivalent to a session or lifetime of the client code that is calling the session bean.
The two subtypes of session beans are stateful session beans and stateless session beans. A
stateless bean is a bean that holds conversations that span a single method call. After each
method call, the container may choose to destroy a stateless session bean, or recreate it,
cleaning itself out of all information pertaining to past invocations. It also may choose to
keep the instance around, reusing it for all clients who want to use the same session bean
class. The exact algorithm is container specific. In fact , stateless session beans can be
pooled, reused and swapped from one client to another client on each method call. This
saves time of object instantiating and memory.

With stateful session beans, pooling is not as simple. When a client invokes a method on a
bean, a client is starting conversation with the bean, and the conversational state stored in
the bean must be available for the same client’s next method request. Therefore, the
container cannot easily pool beans since each bean is storing state on behalf of a particular
client. But we still need to achieve the effect of pooling for stateful session beans to
conserve resources and enhance the overall scalability of the system. EJB containers limit
the number of stateful session beans instances in memory, by swapping out a stateful bean,
saving its conversational state to a hard disk or other storage. This is called passivation.
When the original client invokes a method , the passivated conversational state is swapped
in to a bean. This is called activation. The bean that receives the activated state may not be

the original bean instance, but that’s all right. The container decides which beans to activate
and which beans to passivate and it is specific to each container. Passivation may occur at
any time, as long as a bean is not involved in a method call or transaction.

Entity beans are persistent objects which are constructed in memory from database data, and
they can survive for long periods of time. This means if you update the in-memory entity
bean instance, the data base should automatically be updated as well. Therefore there must
be a mechanism to transfer information back and forth between Java object sand database.
This data transfer is accomplished with two special methods that entity bean class must
implement, called ejbLoad and ejbStore. These methods are called by the container when a
bean instance needs to be refreshed depending on the current transactional state.

The EJB technology assumes that only a single thread can ever be running within a bean
instance. To boost performance it is necessary to allow containers to instantiate multiple
instances of the same entity bean class. This allows many clients to concurrently interact
with separate instances, each representing the same underlying entity data. If many bean
instances represent data via caching , we are dealing with multiple replicas cached in
memory. Some of these replicas could become stale, representing data that is not current. To
achieve entity bean instance cache consistency, each entity bean instance needs to be
routinely synchronized with underlying storage. The container does this by calling the
bean’s ejbLoad and ejbStore methods. The frequency with which beans are synchronized is
dictated by transactions, which give clients the illusion that they have exclusive access to the
data. Similarly as session beans, entity beans instances are objects that may be pooled
depending on the container’s policy. It saves the resources and shortens the instantiating
time. When an entity bean instance is passivated, it must not only release held resources, for
example, the database connection but also save its state to the underlying storage by calling
ejbStore. Similarly, when the entity instance is activated, it must not only acquire certain
resources it needs but also load the most recent data from database.

Enterprise beans encapsulate business logic with business data and expose their interfaces
with all the complexity of the distributed services to the client. This could create some
problems when too many method invocations between client and server lead to network
performance bottleneck and overhead of many simple transactions processing. This
problem is easily solved. We simply use session beans as objects encapsulating all
business logic which exposes a kind of API , which can be used by a client to perform a
certain work. Session beans should be used as a fascade to encapsulate the complexity of
interactions between the business objects participating in a workflow. The Session Fascade
manages the business objects and provides a uniform coarse-grained service layer access
used by clients reducing network overhead. It is also important in situation when entity
beans are transactional components, which means that each method call may result in
invoking a new transaction, which can produce decreasing of performance. It is also
important to note that each transaction commit results in database synchronization
performed by EJB container. This behaviour can be controlled by encapsulating method
calls of entity beans inside the session beans, which act as a transactional “shell” for all
transactions raised by entity beans, thus leading to better performance.

The Session Fascade is one of the most popular EJB design patterns, which helps to obtain
proper partition business logic and at the same time minimizes dependencies between a client
and a server and forcing to execute business transaction in one networked call and in one
transaction.

Session Fascade pattern usage could results in reduction of remote calls. A pattern which
addresses only data transfer reduction overhead is the Value Object pattern. Value Object
encapsulates a set of attributes and provides set/get methods to access them. Value Objects
are transported by value from the enterprise bean to the client component. When the client
requests the enterprise bean for the business data this bean constructs the value object,
populate it with the attribute values and pass it by value to the client. Client, who calls an
enterprise bean, which uses a value object, makes only one remote call instead of numerous
remote calls to get each attribute value in each call. The client receives Value Object and
invokes locally set/get methods on this object for accessing attributes values. It is necessary to
point out that the same pattern could be used to optimise access to data stored in database.

Another problem is that access to data varies depending on the data source . Access to
persistent storage varies greatly depending on the type of storage (RDBMS, OODBMS,
LDAP flat files, and so forth) and the vendor implementation. These data must be accessed
and manipulated from business components such as enterprise beans and other which are
responsible for persistence logic. These components require transparency to the actual
persistent store or data source implementation to provide easy migration to different vendor
products, different storage types, and different data source types.
The solution is to use Data Access Object(DAO) design pattern which abstracts and
encapsulates all access to the data source.

 The DAO design pattern enables transparency between business components and Data
Storage. It acts as a separate layer which can be changed easily in case application migrates
to other database implementation. Because the Data Access Objects manages all the data
access complexities, it simplifies the code in business components that use the data access
objects. All implementation-related code (such as SQL statements) is coded in the DAO and
not in the business object. This improves code readability and development productivity. Also
one important thing should be emphasized at this point. DAO is not useful for CMP entity
beans, because EJB container serves and implements all persistence logic.

In performance study reported in this paper DAO is used as replacement for entity beans, so
this technology will be described in more details. The Data Access Object manages the
connection with the data source and implements mechanism to store and retrieve data . The
DAO pattern can be made highly flexible by adopting the Abstract Factory and the Factory
Method patterns as shown in Fig.1. This strategy provides a DAO factory object that can
construct various types of DAO factories, each factory supporting a different type of a
persistent storage implementation. Once the DAO factory for a specific data store is obtained ,
it it’s used to perform persistence logic. The class diagram shows DAO factory as a base
class from which different DAO factories inherit and implement specific storage access
mechanisms to different implementations (for example, RdbDAOFactory to access an
RDBMS such as Oracle, XmlDAOFactory to access an XML repository, and so on). Then,
use a specific DAO factory such as RdbDAOFactory to obtain specific DAOs that support the
business objects (for example, DAO1, DAO2, and so forth).

Figure 1. DAO Pattern concept

Session Fascade and Value Object should be treated as EJB Layer Architectural Patterns
which should be taken into consideration during designing of EJB based application. There
are also some tips which should be considered during implementation phase of enterprise
beans and which in significant degree can tend to increase the performance. They are shortly
described below:

• Serialization of Value Objects transferred between Remote Enterprise Beans should be

considered and implemented in the most efficient way possible.
 To avoid sending the whole graph of objects a 'transient' key word should be used for the
attributes that need not be sent over the network. Other solution is to implement this value

object as multiple objects instead of coarse grained.

• References to Enterprise beans EJBHome object should be cached. There is already a

pattern, which is called Service Locator, which is responsible for getting any objects from
JNDI tree, and next put them into the cache. Next request for any of these objects
wouldn’t result in JNDI call, but the objects already stored in the cache will be returned.
There is one very important detail which should be mentioned, namely what could happen
if Service Locator is used in clustered environment and whether it is possible for cached
EJBHomes to behave correctly, as for instance , the ability to load balancing requests and
serving the requests in case the server fails or is restarted. The truth is that clustered
servers always use cluster aware home stubs which implement all logic responsible for
redirecting a client’s request to appropriate cluster’s node. The same answer must be
applied to non-clustered environment where home stubs are also able to survive server
restarts and crushes.

• Control transaction by avoiding transactions for non-transactional methods. If method
calls must participate in transaction always appropriate transaction methods signatures
should be declared to increase the performance of a transaction raised by this method call.
The declarative transactions in EJB are at method level that means transaction starts
(begins) when method starts and transaction ends (commits) when method ends. And also
transaction propagates into the sub methods if the parent method uses these sub methods.
For example, if you write a session bean method that calls four of the entity bean methods,
transaction starts when the session method begins and transaction ends when that method
ends, in between transaction propagates into four of the entity bean methods and gets back

to session bean method. It works like a chain of transaction propagations. Declarative
transactions have six transaction attributes: Required, RequiredNew, Mandatory,
Supports, NotSupported and Never. So it is possible to control transaction to avoid
unnecessary transaction propagation on every method. This can be done by dividing
bean's methods into transactional methods and non-transactional methods and assigning
transaction attributes to only transactional methods, assign 'NotSupported' or 'Never' to
non-transactional methods to avoid transaction propagation. Please note that
'NotSupported' or 'Never' attributes cannot be used for entity beans because they need to
involve in transaction to commit data, so these attributes can be used only for session
bean's non-transactional methods. In this process we are controlling transaction
propagation if any method uses other session beans but we have to be careful whether sub
beans need a transaction or not. The transaction mechanism should span for minimum
time possible because transaction locks the database data till it completes and it does not
let other clients access these data.

• Use JDBC for reading. The most common use case encountered in distributed applications

is the need to present a set of data resulted from certain search criteria, known as a read-

only use case. When a client requests data for read-only purposes, solution, which uses
entity beans, has some unnecessary overhead, which is often called N+1 problem. In
order to read N database rows when entity beans are used, one must first call finder
method, which is one database call. Next for each acquired row, which is represented by
entity bean ejbLoad method is called. Thus, a simple database query operation requires
N+1 database calls when going through entity beans layer. Each such database call will
temporarily lock a database connection from pool, open and close result sets and so on.
Using JDBC for reading has some advantages. When we use JDBC queries to fetch data,
queries are performed in one database call. All client data are acquired in single operation,
which needs only one connection from pool, one statement and one result set. Comparing
this behaviour to entity beans we can notice significant improvement of performance

• Some disadvantages of using entity beans were already mentioned when JDBC for

reading use case was discussed. To solve some performance problems of entity beans,
EJB specification offers option called read-only entity beans.
The advantage of read-only entity beans is that their data can be cached in memory, booth
in one server and many servers when dealing with clustering. Read only entity beans
don’t use expensive logic to keep the distributed caches coherent. Instead, the deployer
specifies a timeout value and the entity bean’s cached state is refreshed after the timeout
has expired. Like any entity bean, the bean state is refreshed with the ejbLoad method
call. When client invoke any method on read-only entity bean container ensures whether
the associated data is older then timeout value. If this is a true synchronizing it’s state is
performed through ejbLoad method call. Because read-only entity beans don’t participate
in updating operations, ejbStore method is never called. One more thing is that read-only
beans don’t have to participate in transactions because their ejbCreate is never used.
Read-only and read-write entities can live together when considering read-mostly design
pattern. The concept of this pattern is the EJB optional deployment setting of read-only
and to deploy the same bean code twice in the same application, once as read/write beans
to support transactional behaviour, and once as read-only beans to enable rapid data
access. In a read-mostly pattern, a read-only entity EJB retrieves bean data at intervals
specified by the refresh-period deployment descriptor element specified in the descriptor
file. A separate read-write entity EJB models the same data as the read-only EJB, and
updates the data at required intervals. Main factor which should be considered when using

read-mostly pattern to reduce data consistency problem is to choose appropriate value of
refresh interval. This should be set to the smallest timeframe that yields acceptable
performance levels.

3. Tuning mechanisms in EJB servers during deployment phase

In this section the attributes of EJB Servers such as thread count, session and entity beans
pools, and data source which are set in the deployment description are discussed.

• Tune thread count in EJB server. EJB server may have a facility to tune the number of

simultaneous operations/threads (thread count) it can run at a time. If the default value of
thread count provided by the server is less than the capability of the server, the clients
requesting for an application may be put in a queue. Depending on resources and the
capability of the server one should change the thread count to improve performance.

• Tune Session Beans. Optimisation practises discussed so far in Section 2 can be also

applied to session enterprise beans , but there are also some details, which are specific to
them. As we now we have two types of session beans: stateless and statetful. Stateless

beans are not pined to any particular client, that means, they are returned to the pools
when the business method has been executed. Every client who wants to perform any
operation on this bean shares this pool. Of course in this pool there is only a limited
number of beans, so if there are more requests than numbers existing in the pool these
requests are queued. There is a possibility to specify minimum and maximum instances of
session beans in vendor deployment descriptor. These values should be adjusted to
number of clients who will perform any operation on that enterprise bean. If a session
bean acts as a Session Facade, then setSessionContext should be used for setting
references to entity beans EJBHome handles. Here should be also fetched other resources
like session beans, data sources which can be used during life cycle of this bean.

• Tune Entity Beans. The same optimisation practises as for session beans pool can be also
applied to entity beans pool. At this point one thing should be emphasized, namely entity
beans are responsible for persistence, thus their behaviour is much more heavyweight than
session beans. Activation and passivation during lifetime of entity beans are expensive.
For every activation the Container calls ejbLoad to get latest data from the database and
calls ejbActivate method. For every passivation the Container calls ejbStore to store data
in the database and calls ejbPassivate method. Methods ejbLoad and ejbStore
communicate with the database to synchronize the latest data. If the number of concurrent
active clients (when the client calls business methods) is bigger than instance cache size
then activation and passivation occur often thus effecting the performance. So in order to
increase the performance, the optimal cache size must be set. The cache size must be
equal to concurrent active clients accessing the bean. The instance cache size and pool
size in entity beans are larger than session beans. The beans in the pool and the cache
should accommodate the entity beans requirements like finder methods that return large
number of records and populate the data in the beans. So we should be careful when we
configure entity bean pool size and cache size.

• Use transacted TxDataSource instead of non-transacted DataSource. The main difference
between TxDataSource and DataSource is ability to handle distributed transactions across
multiple databases. Also the connections are handled differently. Non-transacted
DataSource always grabs a connection from a pool with autoCommit flag set to true,

which means that each update is immediately commited to DB. TxDataSource recognizes
the fact that there is a transaction in progress and if the connection was requested for the
first time it sets its autoCommit to false and associates it with the current transaction. This
means that connection will not be returned to the pool until the moment transaction
completes and all subsequent DataSource.getConnection()calls return the same
connection.

The presented technical issues are very important for EJB Server activity related to

Container Managed Persistence support. They are manifested as an extension to CMP
known as optimised loading and commit options. Optimized loading option is to load the
smallest amount of the data required to complete the transaction in the least number of
queries. Optimized loading helps to avoid N+1 problem when fetching data using entity
beans. To use this option the application deployer must define named-groups for entity bean
which contain only these bean data which are needed to perform transaction. These data
include booth current bean fields among with relationships. This option is implemented in
each application server evaluated in our tests, but naming convention in each of them is
different. Commit options are also very important for loading process as they decide when
an entity bean expires. EJB Specification 2.0 final Release specifies commit options A, B,
and C defined as follows:

A. Container assumes that it is the sole user of database, therefore it can cache data of
an entity bean between transactions, which can result in substantial performance
gains.

B. Container assumes that there is more than one user of the database but keeps the
context information about entities between transactions. This is the default commit
option.

C. Container discards all entity bean context and data at the end of the transaction.

JBOSS implements also commit option D which is similar to A, except that the data only
remain valid for a specified period of time.

4. Performance study methodology and scenarios

The goal of the performance study reported in this paper is a stress testing of a typical
application implemented in J2EE environment. The stress testing is performed to ensure that
the application scales appropriately handle the load for which it has been designed. An
application called DSRG Training Activity Manager was used as a case study. This
application supports educational activities like creating a new students’ laboratory, assigning
teachers to laboratories, creating new lessons, adding students, creating tests, etc. All
information was stored in RDBMS database whose structure is depicted in Fig.2.

t_ g ro u p

P K id

s ta te

t_ la b o ra to ry

P K id

n a m e
y e a r _ g r o u p _ n a m e
d e s c r ip tio n _ u rl

t_ la b o ra to ry _ a c tiv ity

P K id

d a te
F K 2 te a c h e r_ id
F K 1 la b o r a to r y _ id
F K 3 g ro u p _ id

t_ s tu d e n t_ g ro u p

P K id

F K 2 s tu d e n t_ id
f in a l_ m a rk

F K 1 g r o u p _ id

t_ s tu d e n t

P K id

n a m e

t_ te a c h e r

P K id

n a m e

t_ le s s o n

P K id

F K 1 g ro u p _ id
d a te
s u b je c t

d e s c r ip tio n _ u r l

t_ le s s o n _ te s t

P K id

F K 1 le s s o n _ id
F K 2 te s t_ id

d e s c r ip tio n _ u rl

t_ a t te n d a n c e _ a c tiv ity

P K id

F K 1 le s s o n _ id
F K 2 s tu d e n t_ id

a tte n d a n c e

a c tiv ity

t_ te s t

P K id

s u b je c t

d e s c r ip tio n _ u r l

w e ig h t

t_ te s t_ ta s k

P K id

F K 1 te s t_ id

n u m b e r
m a x _ s c o re

w e ig h t

t_ s tu d e n t_ ta s k

P K id

F K 2 s tu d e n t_ id

F K 1 ta s k _ id
a c h ie v e d _ s c o r e

te s t_ w e ig h t

t_ p ro je c t

P K id

F K 1 g ro u p _ id
s u b je c t
d e s c r ip tio n _ u r l

t_ p ro je c t_ g ro u p

P K id

F K 1 p r o je c t_ id
re p o r t_ u rl

s ta te

t_ s tu d e n t_ p ro je c t

P K id

F K 1 p ro je c t_ g r o u p _ id
F K 2 s tu d e n t_ id

f in a l_ m a rk

Figure 2. Database structure of DSRG Training Activity Manager

Three use cases which correspond to three typical operations on database were used for the
testing purpose:

• Create Data - new lessons for a given activity group are created with attendance info
and tests which can take place in this created lessons.

• Select Data - lessons info for a given activity group is fetched. This includes
attendance info and tests scores which belongs to these lessons.

• Delete Data - delete info about lessons and test for a given activity group.

The investigated stress tests were oriented on database access performance study, so the data
persistence mechanisms implementation was the most important . Two different approaches
have been studied in this context:

• Session Fascade with DAO - DAO is responsible for implementing appropriate

factory classes, which use JDBC API to implement access too database.
• Session Fascade with entity beans based on CMP 2.0 specification - all business

logic responsible for persistence operations provided by EJB container which
implements CMP 2.0 services.

These two approaches will be compared in more details in the following sections.

4.1.Session Fascade with DAO

With this approach, DAO objects are used to access data residing in RDBMS. The JDBC API
enables standard access and manipulation of data in persistent storage, such as a relational
database. Including the connectivity and data access code within session EJB component
introduces a tight coupling between this component and the data source. Thus DAO design
pattern is used to abstract and encapsulate all access to the data source which also manages all

connections to store and retrieve all information. The architecture of DAO framework
implemented for this purpose in our case study is shown at the diagram bellow:

Figure 3. DAO framework class diagram

The important advantage of using direct JDBC is the ability to perform bulk SQL operations
on the underlying relational database which helps to avoid multiple database calls, which
helps significantly to achieve better performance. During this operations JDBC SQL
parameterised query java.sql.PreparedStatement is used . Also transaction attribute
RequiresNew were set for session bean methods which were exposed to the client.

4.2 Session Fascade with CMP 2.0

The EJB 2.0 model provides the improved support for container managed persistence for
entity beans. EJB 2.0 supports better modelling capability for the bean provider in terms of
what is called container managed relationships. This relationship can be implemented using
local objects which offer lightweight access instead of using remote interfaces. Also all finder
methods are implemented using EJB QL which ensures compatibility between all EJB
containers. Fig.4 shows entities with relationships between them which represent data stored
in RDBMS in our case study.

CMP 2.0 supports container managed relationships both in selecting and removing data. This
enables to cascade deletes of all child data from any entity. One disadvantage of container
manager relationships is the necessity to set explicitly the code relationships between entities
when data are created. Transaction attributes for enterprise beans are set to RequiresNew for
all client session bean methods and Required for entity beans.

Figure 4. EJB entity beans participating in CMP 2.0 implementation

4.3. Load generation application

During the stress tests the presentation layer of the DSRG Training Activity Manager was
replaced with the Grinder [15] load generation client application which was responsible for
direct calls of session beans over IIOP-RMI, measuring performance and collecting all data.
The Grinder is a pure Java load-testing framework that is freely available under a BSD style
open-source license. Test client code is written in the form of Java "plug-ins". The grinder can
simulate simultaneous clients accessing the application who can next perform any business
transaction. It also records the time which elapsed from starting and finishing of a business
transaction. The Grinder architecture, depicted in Fig.5, is quite sophisticated in spite of this it
is very simple to use and to extend.

Figure. 5 Grinder engine architecture

The load applied in the performance study reported in this paper corresponds to the situation
when a given number of clients is started at one by the Grinder. Each client performs the same
business transaction which belongs to create, select of delete use case. After business
transaction is finished successfully, the time, which elapsed from starting to ending of this
transaction, is written to the Grinder’s result-log file. When all transactions are finished the
Grinder calculates Average Response Time (ART) as an average of the logged times.

5. Performance test results

For tests purposes only these J2EE application servers were considered which fully
implements EJB 2.0 specification. Each application server was run with provided JVM,
otherwise JDK 1.3 was used. This means that JDK 1.3 was used to evaluate test on Weblogic
(provided with distribution) and JBOSS. In case of Sun ONE java runtime in version 1.4 were
used which is also provided with the distribution.
As a database server Oracle9i was used with JDBC 4 thin driver. Also some standard
configuration was modified to support the increased number of concurrent users. This
includes increasing maximum number of processes (default is 50) to 500 and amount of open
cursors (default is 50) also to 500. Oracle server was set up to work in a dedicated mode,
which means that each physical connection (e.g. JDBC Connection) is served by one process.

Both the application server and database server were run on the same multi CPU machine
SUN Fire 6800 with 20 processors, 20 GB RAM, 120 GB hard drive and Sun Gigabit
Ethernet interface and with Solaris 8 operating system. Grinder runtime was started on a
separate machine SUN Fire 3800 with 4 processors, 4 GB RAM, Sun Gigabit Ethernet
interface and also with Solaris 8 operating system.

5.1 Test scenario

Use cases are performed in following order: create, select, delete with each implementation
method i.e. SF with DAO and SF with CMP 2.0 separately. Table 1 shows summary of how
many rows are inserted in each table for given number of concurrent users in case of create
use case. Delete use case is only performed for one user, who removes all entries created
previously by all users. Select use case operates on number of entries created by 10 users.

Table 1. Number of rows inserted in each table by given number of concurrent users

Table name\Users 10 50 100 150 200 250 300 400 500 600 700 800 900 1000

t_lesson 10 50 100 150 200 250 300 400 500 600 700 800 900 1000

t_attendance_activity 100 500 1000 1500 2000 2500 3000 4000 5000 6000 7000 8000 9000 10000

t_lesson_test 10 50 100 150 200 250 300 400 500 600 700 800 900 1000

t_student_task 400 2000 4000 6000 8000 10000 12000 16000 20000 24000 28000 32000 36000 40000

t_test 10 50 100 150 200 250 300 400 500 600 700 800 900 1000

t_test_task 40 200 400 600 800 1000 1200 1600 2000 2400 2800 3200 3600 4000

Total: 570 2850 5700 8550 11400 14250 17100 22800 28500 34200 39900 45600 51300 57000

5.2. Application servers stress testing results

As it has been already mentioned three different application servers were evaluated for testing
purposes, i.e. Weblogic 7.1, JBOSS 3.0.2 and Sun ONE 7.0.

Weblogic 7.1 contains some extra features which enhance performance of CMP entity beans.
This includes optimized loading (named groups and eager relationships fetching), db-is-

shared (caching between transactions) options and read-only entities.
Unfortunately in case of Weblogic 7.1 certain errors occurred upon performance of some
tests. Utilizing CMP 2.0 implementation method for 100 concurrent users may be given as

example errors in selecting data use case. First error (Listing 1) was connected with EJB
entity beans cache, which indicated that cache for entity beans was exceeded:

weblogic.ejb20.cache.CacheFullException
 at weblogic.ejb20.cache.EntityCache.put(EntityCache.java:363)
 at weblogic.ejb20.manager.DBManager.getReadyBean(DBManager.java:312)

Listing 1 .Weblogic exception which indicates out of size for entities

Default Weblogic size cache for entity beans is set to 100 and when this number is greater
then exception shown above, it is thrown by EJB container. To avoid this error appropriate
cache size (max-beans-in-cache) for entity beans in weblogic-ejb-jar.xml deployment
descriptor must be set. Simple formula to set this size is as follows
execute_thread_count*number_of_data_returned. After setting correct values for entity
cache size, next error shown in Listing 2 occurred which is connected with Weblogic JTA
timeout parameter which helps to avoid deadlocks.

java.sql.SQLException: The transaction is no longer active (status = Marked rollback. [Reason
=weblogic.transaction.internal.TimedOutException: Transaction timed out after 33 seconds

Listing 2 .Weblogic exception which indicates transaction timeout exception

Unfortunately, default value equal to 30 seconds was to small for these tests and 600
seconds was chosen. Last error was connected with J2EE application client, precisely with
session beans stubs generated by Weblogic EJB compiler. These stubs have timeout (RMI
timeout) value, which specifies the maximum time the client waits for response data from
Weblogic server. The value by default is set to 240 seconds and if this is exceeded the
exception is thrown and the client is unable to finish the business transaction. Unfortunately
this error was the main drawback in these tests, especially when select data use case was
performed.

JBOSS 3.0.2 offers some extensions to CMP: commit options (A, B, C, D), optimized loading
(read-ahead), read-only entities. There is also one important feature, which is connected with
mechanism of communication between JBOSS and remote clients. Namely for this purpose
communication which relies on Dynamic Proxies architecture is used. The characteristic of
this solution is that, stubs are not generated at the compilation time, but at the execution time
using Java Reflection API. One of the drawbacks of JBOSS is the lack of possibility to set
the executive thread pool count for the EJB server directly in JBOSS configuration files. The
only way to control this, is to set up a HTTP server in the front-end of JBOSS. This cannot
be applied during this test because direct access to EJB server through JNDI service is used.
Server option BlockingTimeoutMillis applies to JDBC ConnectionPool behaviour, namely
this specifies how long a component has to wait for a desired connection in case there is no
connection available. If this period is longer than this timeout value (by default this is 5
seconds), exception (Listing 3) is thrown.

ERROR - obtaining jdbc connection failed:No ManagedConnections Available!; - nested throwable
: (javax.resource.ResourceException: No ManagedConnections Available!)

Listing 3. JBOSS Exception which indicates timeout during fetching connection from pool

This timeout error was the main reason why some business transactions failed depending on
the number of concurrent users. This situation is analogous when considering RMI timeout in
case of Weblogic server.

Sun ONE 7.0 application server is an entirely new architecture which implements J2EE 1.3
and it’s a part of Sun ONE platform. Sun ONE platform is Sun's standards-based software
vision, architecture, platform, and expertise for building and deploying Services on Demand.
It provides a highly scalable and robust foundation for traditional software applications as
well as current Web-based applications, while laying the foundation for the next-generation
distributed computing models such as Web services.
Some extensions to CMP 2.0 include two commit options B and C, optimized loading (named

groups) and read-only entities (works only for BMP). Interesting fact is that, CMP 2.0 engine
is based on Java Data Objects [19] technology which is treated as an alternative to entity
beans. One of the drawbacks of current version of Sun ONE application server is the lack of
clustering capabilities, but this will be implemented in future versions with commit options A
and D. Thread pool size can be set separately for web server and ORB which is responsible
for managing incoming client requests through RMI-IIOP.
During performance tests of Sun ONE we didn’t face any serious errors like timeouts,
concurrent access problems etc.

Table 2 collects runtime parameters for each application server under tests separately.

Table 2. Application servers parameters setting

Server Java Runtime Server specific settings
Weblogic 7.1 SUN JDK 1.3.1_03

Minimum heap size: 32 MB
Maximum heap size: 200 MB

Execute thread count(thread pool size): 15
JDBC pool size: initial 15, maximum 20
Transacted data source: TxDataSource

JTA timeout: 600 seconds
JBOSS 3.0.2 SUN JDK 1.3.1_03

Minimum heap size: 32 MB
Maximum heap size: 200 MB

JDBC pool BlockingTimeoutMillis: 480 seconds
JDBC pool size:
Single instance: initial 20, maximum 25
Clustered instance: initial 15, maximum 20
Non-transacted data source: DataSource

JTA timeout: 600 seconds
Default HyperSonic service shut downed.

SunOne 7.0 SUN JDK 1.4.0_02
Minimum heap size: 128 MB
Maximum heap size: 256 MB

ORB thread pool size: 15
JDBC pool size: initial 15, maximum 20
Non-transacted data source: DataSource

JTA timeout: 600 seconds

Fig.6 and 7 show result performance metrics adequately for create use case and delete use

case. As we can notice DAO simply overkills CMP 2.0 when used for deleting and removing
and this situation takes place in all EJB containers. The only difference is that, we have
various performance metrics, especially for CMP 2.0 persistence container implemented in
each EJB container. Implementation of CMP 2.0 in Weblogic and Sun ONE has much better
performance metrics when used for inserting and removing data then in JBOSS. The reason
for this is probably that Weblogic and Sun ONE better supports bulk inserts and deletes, which
increases performance of Container Managed Persistence during creating and removing data.

0

50000

100000

150000

200000

250000

50 100 150 200 250 300 400 500 600 700 800 900 1000

Number of concurrent users

A
R

T
[m

s
]

Weblogic - DAO

Weblogic - CMP2.0

JBOSS - DAO

JBOSS - CMP2.0

SunOne - DAO

SunOne - CMP2.0

Figure 6. Create use case test results

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 400 500 600 700 800 900 1000

Number of users which created data

A
R

T
[m

s
]

Weblogic - DAO

Weblogic - CMP2.0

JBOSS- DAO

JBOSS - CMP2.0

SunOne - DAO

SunOne - CMP2.0

Figure 7. Delete use case test results

Performance metrics for select use case are shown in Fig.8. When analyzing Weblogic and
Sun ONE response times we may come to the conclusion that DAO offers much better
performance than CMP 2.0. Considering JBOSS results we have totally different conclusions;
DAO rather doesn’t have a significant impact on performance, it even scales worse at the
application level. On the other hand, if we consider JBOSS CMP 2.0 extra options like

Commit A or read-only entities results in performance are significant. The reason for which
Commit A has better performance then read-only entities is probably refresh-timeout which
indicates period for which cache must be refreshed according to database. For purposes of this
tests refresh period was set to 150 seconds and there is a really big probability that entities
were refreshed during tests.
The big surprise is a behavior of read-ahead (JBOSS) and fetch-groups (Weblogic, Sun ONE)
options. Superiority over pure CMP can only be noticed only with read-ahead, but differences
in response times are not so significant as may expected. When fetch groups are used the
performance is even worst.

0

50000

100000

150000

200000

250000

300000

100 200 300 400 500 600 700 800 900 1000

Number of concurrent users

A
R

T
[m

s
]

Weblogic - DAO
Weblogic - CMP2.0
Weblogic - CMP2.0 (Read-Only)
Weblogic (Fetch Groups)
JBOSS - DAO
JBOSS - CMP2.0
JBOSS - CMP2.0 (Commit-A)
JBOSS - CMP2.0 (Read-ahead)
JBOSS - CMP2.0 (Read-Only)
SunOne - DAO
SunOne - CMP2.0
SunOne - CMP2.0 (Fetch Groups)

Figure 8. Select use case test results

5.3. Clustering

Scalability tests, shown in Fig.9 performed with JBOSS and Weblogic application servers
shows that we can rely on clustering features offered by these application servers. The Sun
ONE 7.0 does not support clustering at the moment. There is a significant improvement of
performance when working on single instance and 2-node cluster, but differences between 2-
node and 3-node are not so big according to response times.
The results of tests performed in clustered environment show that we were able to achieve
better scalability; which means that there was a possibility to service more clients requests at
the same time , and have the average response time decreased.

0

50000

100000

150000

200000

250000

100 200 300 400 500 600 700

Number of concurrent users

A
R

T
 [

m
s
]

JBOSS (No cluster)

JBOSS (2 Nodes)

JBOSS (3 Nodes)

Weblogic (No cluster)

Weblogic (2 Nodes)

Weblogic (3 Nodes)

Figure 9. Select use case with CMP2.0 in a cluster

5.4. Application servers and JRE parameters setting

There is also possibility to play around some parameters which are specific both for a
application server and java runtime. The scenario for application server may include thread
poll size, entity cache size and other attributes which mostly are specific to the application
server itself but may influence the performance of the whole application to a significant
degree. The java runtime arguments may include some standard options e.g. initial (Xms) and
maximum (Xmx) heap size and some other which are specific to the platform [16]. Setting
the tests performed for Sun ONE 7.0 application server will be shortly discussed to illustrate
the influence of these options. .
Baseline test concentrates on all parameters already mentioned i.e. thread pool size, entity
cache initial and maximum heap size for JRE. Having analysed the results shown in Fig.10
we chose the following arguments mix for further tests : thread pool size equals to 20, entity
cache with default values (initial and maximum size equals adequately to 32 and 64) and JRE
initial and maximum heap size set to 256MB and 356MB. Next select use case with CMP 2.0
implementation method was performed. Comparisons metrics for two parameters mix are
presented in Fig.11 and show that using arguments from baseline test offers average about
15% of improvement in performance.

10000

10500

11000

11500

12000

12500

13000

100
Number of concurrent users

A
R

T
 [

m
s

]

15 Threads(Xms128m,Xmx256m)

20 Threads(Xms256m,Xmx356m)

25 Threads(Xms356m,Xmx456m)

25 Threads(Xms456m,Xmx556m)

25 Threads(Xms456m,Xmx556m) Entity cache (64,128)

Figure 10. Baseline test for optimum thread pool and entity cache

0

20000

40000

60000

80000

100000

120000

100 200 300 400 500 600 700 800 900 1000

Number of concurrent users

A
R

T
 [

m
s

]

15 Threads(Xms128m,Xmx256m)

20 Threads(Xms256m,Xmx356m)

Figure 11. Select use case with appropriate thread pool and standard entity cache

5.5. Conclusions from tests

The obtained results proved that using DAO implementation method leads to better
performance than CMP 2.0 when it was used to create or remove data. Analysis of
performance metrics for the ‘select’ use case gives rather different view. When comparing
DAO and CMP 2.0 with standard descriptor settings the first one gives significantly better
performance when tested on Weblogic and Sun ONE. When analyzing some extra features
related to CMP engine which are not strictly correlated with EJB specification like: commit-A
or even read-only entities; using CMP 2.0 seems to be much more attractive than direct JDBC
calls encapsulated in DAO. CMP 2.0 is much more flexible because of descriptors files which
describe how each EJB component should be deployed into EJB container. Next thing which
should be emphasized is that maintenance of DAO and JDBC code is much harder for
developers and involve much more effort than persistence mechanisms implemented by the
container. Nevertheless DAO offers the best performance in each tested use case when
considering basic container options for CMP 2.0. This is specially seen in case of Sun ONE
application server where DAO offers really good response times and is more ahead of it’s
competition i.e. Weblogic and JBOSS. Sun ONE behave very well also in create and delete
use case with DAO and CMP 2.0 implementation method. The reason for this is probably a
new architecture designed by Sun’s engineers, but also that, we used JDK 1.4 for these tests,
which introduces a lot of performance improvements [17] comparing to JDK 1.3. The big
disappointment are performance results taken from JBOSS, because as we can notice it has
the worst metrics from all the tested application servers.
As it has already been mentioned a lot of transactions weren’t able to finish successfully
because of timeouts on Weblogic and JBOSS especially during performing select use case
both with DAO and CMP 2.0.

6. Summary

Performance testing of the EJB based application is rather a huge task and big challenge.
There is a lot of factors at the application level and extensions offered by the application
server. Appropriate adoption of these parameters involves holistic understanding of
application and seems to be one of the most difficult part of the deployment phase.

The obtained results confirm that EJB performance is very sensitive to CMP Service
attributes settings and could be easily destroyed even by wrong JRE parameters setting. In
the case when an application requires higher scalability the alternative solutions to entity
beans such as DAO should seriously considered.
This paper concentrates rather only on performance and scalability issues of middle tier where
business logic of applications is implemented. We don’t investigate these issues in the
presentation and data tier. Good approach for the future is performance analyzing combined
with optimizations practices, which can be applied to the data tier. This may include
obtaining some statistics and performance reports after performing each use case with a given
implementation method. Using these techniques will give a possibility to monitor an impact
produced by each use case and implementation method. Further research can also be extended
to the application server itself, not only to the performance tests but also to profiling. This
may help estimate the impact on performance of each implementation method much better.

Bibliography

 [1] A.Schaefer, JBoss 3.0: Quick Start Guide, JBoss Group, 2002

 [2] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns - Best Practices and Design Strategies Prentice
Hall PTR / Sun Microsystems, 2001

 [3] D. Bulka, Java Performance and Scalability, Volume 1, Addison Wesley Professional, 2000

 [4] D. Sundstrom, JBoss CMP, JBoss Group, 2002

 [5] E. Gamma, R. Helm, R. Johnson, J. Vissides, Design Patterns, Addison-Wesley Publishing
Company, 1994

 [6] E. Roman, S. Ambler, T. Jewell, Mastering Enterprise JavaBeans, Second Edition

 [7] F. Marinescu, EJB Design Patterns – Advanced Patterns, Processes, and Idioms John Wiley &
Sons, Inc., 2002

 [8] J. Shirazi, Java Performance Tuning, O’Reilly, 2000

 [9] L. G. DeMichiel, S. Krishnan, L. Ü. Yalçinalp, Enterprise Java Beans specification version 2.0,
Sun Microsystems, 2001

 [10] M. Girdley, R. Woollen, S.L. Emerson, J2EE Applications and BEA WebLogic Server, Prentice
Hall PTR, 2001

 [11] P. Gomez, P. Zadrozny, Java 2 Enterprise Edition with BEA Weblogic Server

 [12] R. Monson-Haefel, Enterprise JavaBeans, 3
nd

 Edition, O’Reilly, 2001

 [13] R. Adalta, F. Arni, K. Gabhart, J. Griffen, M.B. Juric, A. Mulder, D. O’Conner,
J. Lott, T. McAllister, A Mulder, N. Nagarjan, T. Osborne, P.G. Sarang, A. Tost, D. Young,
Craig.A. Berry, Professional EJB, WROX Press Ltd.,2001

 [14] S. Wilson, J. Kesselman, Java Platform Performance, Strategies and Tactics, Addison Wesley,
2000

 [15] Grinder Home Page http://grinder.sourceforge.net

 [16] Java HotSpot VM Options http://java.sun.com/docs/hotspot/VMOptions.html

 [17] Java 2 Platform Standard Edition, Performance and Scalability Guide
http://java.sun.com/j2se/1.4/performance.guide.html

 [18] JDBC Home Page http://java.sun.com/products/jdbc

 [19] Java Data Objects http://java.sun.com/products/jdo

